Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{575}\)
\(\Rightarrow A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{23.25}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{23}-\frac{1}{25}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{25}\)
\(\Rightarrow A=\frac{25}{75}-\frac{3}{75}\)
\(\Rightarrow A=\frac{22}{75}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{575}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{23.25}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{23}-\frac{1}{25}\)
\(=\frac{1}{3}-\frac{1}{25}\)
\(=\frac{22}{75}\)
Study well ! >_<
\(A=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{575}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{23\cdot25}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{23}-\dfrac{1}{25}\\ =\dfrac{1}{3}-\dfrac{1}{25}\\ =\dfrac{25}{75}-\dfrac{3}{75}\\ =\dfrac{22}{75}\)
A \(=\) \(\dfrac{2}{15}\) \(+\) \(\dfrac{2}{35}\) \(+\) \(\dfrac{2}{63}\) \(+\) . . . . . \(+\) \(\dfrac{2}{575}\)
\(=\) \(\dfrac{2}{3.5}\) \(+\) \(\dfrac{2}{5.7}\) \(+\) \(\dfrac{2}{7.9}\) \(+\) . . . . . \(+\) \(\dfrac{2}{23.25}\)
\(=\) \(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{7}\) \(+\) \(\dfrac{1}{7}\) \(-\) \(\dfrac{1}{9}\) \(+\) . . . . . \(+\) \(\dfrac{1}{23}\) \(-\) \(\dfrac{1}{25}\)
\(=\) \(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{25}\)
\(=\) \(\dfrac{22}{75}\)
\(-2\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\right)\)
\(=-2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{99.101}\right)\)\(=-2\cdot\left(\frac{1}{3}-\frac{1}{101}\right)\)
=.....
mình quên đem máy tính nên k ghi đc đấp số
THÔNG CẢM
Bài 4:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...........+\frac{2}{2005.2007}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+............+\frac{1}{2005}-\frac{1}{2007}\)
\(=\frac{1}{3}-\frac{1}{2007}\)
\(=\frac{669}{2007}-\frac{1}{2007}=\frac{668}{2007}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+.....+\frac{2}{4024035}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{2005.2007}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.......+\frac{1}{2005}-\frac{1}{2007}\)
\(=\frac{1}{3}-\frac{1}{2007}\)
\(=\frac{668}{2007}\)
2/15+2/35+2/63+.....+2/9603=2/3.5+2/5.7+2/7.9+...2/97.99
=1/3-1/5+1/5-1/7+...+1/97-1/99
=1/3-1/99
=33/99-1/99
=32/99
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{9603}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+..+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
Ủng hộ mk nha !!! ^_^
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{575}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{23.25}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{23}-\frac{1}{25}\)
\(=\frac{1}{3}-\frac{1}{25}=\frac{22}{75}\)