K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

\(\lim\limits_{x\rightarrow8}\dfrac{x^2-8x}{2-\sqrt[3]{x}}=\lim\limits_{x\rightarrow8}\dfrac{x\left(x-8\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{8-x}\)

\(=\lim\limits_{x\rightarrow8}-x\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)\)

\(=-8\left(4+2\sqrt[3]{8}+\sqrt[3]{8^2}\right)=-96\)

9 tháng 2 2022

a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)

b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)

c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)

d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe

25 tháng 4 2017

a/ \(\lim\limits_{x\to 1} f(x)=\frac{x^{2}-5x + 6}{x-2} \)

\(<=>\lim\limits_{x\to 1} f(x)=\dfrac{(x-3)(x-2)}{x-2} \)

<=>\(\lim\limits_{x\to 1} f(x)=x-3 \)

\(<=>\lim\limits_{x\to 1} f(x)=-2\)

NV
5 tháng 3 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)

a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)

b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)

Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)

\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)

\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)

NV
5 tháng 4 2020

Chắc bạn ghi nhầm đề, đây là giới hạn bình thường, cứ thay số thôi:

\(=\frac{2+8+7-4-4}{2+14+20+8}=\frac{9}{44}\)

NV
5 tháng 4 2020

Đề này vẫn thay số bạn, vì tử số khác 0 khi \(x=-1\)

\(=\frac{1}{0}=+\infty\)

Nếu tử số là \(x^4+8x^3+7x^2-4x-4\) thì nó mới là dạng vô định \(\frac{0}{0}\)

nguyen thi khanh nguyen

NV
27 tháng 2 2020

Bạn tự viết kí hiệu lim:

\(=\frac{x\left(1-\sqrt{1+\frac{2}{x^2}}\right)}{-x\sqrt{8+\frac{5}{x}+\frac{2}{x^2}}}=\frac{0}{-\sqrt{8}}=0\)

20 tháng 2 2022

Câu a.

\(^{lim}_{x\rightarrow3}\dfrac{\sqrt{x+1}-x+1}{x^2-5x+6}\)

Nhân liên hợp ta đc:

\(^{lim}_{x\rightarrow3}\dfrac{x+1-\left(x-1\right)^2}{(x^2-5x+6)\cdot\left(\sqrt{x+1}+x-1\right)}\)

\(=^{lim}_{x\rightarrow3}\dfrac{-x^2+3x}{\left(x-3\right)\left(x-2\right)\left(\sqrt{x+1}+x-1\right)}\)

\(=^{lim}_{x\rightarrow3}\dfrac{-x}{\left(x-2\right)\cdot\left(\sqrt{x+1}+x-1\right)}\)

\(=\dfrac{-3}{\left(3-2\right)\cdot\left(\sqrt{3+1}+3-1\right)}=-\dfrac{3}{4}\)

20 tháng 2 2022

Câu b.

\(^{lim}_{x\rightarrow-2}\left|x^3-3x\right|\)

\(=\left|\left(-2\right)^3-3\cdot\left(-2\right)\right|=\left|-2\right|=2\)

Câu này đơn giản chỉ thay số thôi nhé, nó ở dạng đa thức nữa!