K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

\(A=x^2+2y^2-2xy+4x-2y+12\)

\(A=\left(x^2-2xy+y^2\right)+y^2+4x-2y+12\)

\(A=\left[\left(x-y\right)^2+2\left(x-y\right).2+4\right]+\left(y^2+2y+1\right)+7\)

\(A=\left(x-y+2\right)^2+\left(y+1\right)^2+7\)

Mà  \(\left(x-y+2\right)^2\ge0\forall x;y\)

      \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow A\ge7\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+2=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)

Vậy  \(A_{Min}=7\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

8 tháng 11 2021

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

19 tháng 5 2022

a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6

(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2

19 tháng 5 2022

`a)A=x^2+4x-2`

   `A=x^2+4x+4-6=(x+2)^2-6`

Vì `(x+2)^2 >= 0 AA x`

`<=>(x+2)^2-6 >= -6 AA x`

   Hay `A >= -6 AA x`

Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`

Vậy `GTN N` của `A` là `-6` khi `x=-2`

________________________________________________

`b)B=2x^2-4x+3`

   `B=2(x^2-2x+3/2)`

   `B=2(x^2-2x+1)+1=2(x-1)^2+1`

Vì `2(x-1)^2 >= 0 AA x`

`<=>2(x-1)^2+1 >= 1 AA x`

  Hay `B >= 1 AA x`

Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`

Vậy `GTN N` của `B` là `1` khi `x=1`

__________________________________________________

`c)C=x^2+y^2-4x+2y+5`

   `C=x^2-4x+4+y^2+2y+1`

   `C=(x-2)^2+(y+1)^2`

Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`

  `=>(x-2)^2+(y+1)^2 >= 0 AA x,y`

 Hay `C >= 0 AA x,y`

Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`

                         `<=>{(x=2),(y=-1):}`

Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1

14 tháng 10 2018

Câu 1 :

\(E=4x^2+y^2-4x-2y+3\)

\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)

\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Câu 2 :

\(G=x^2+2y^2+2xy-2y\)

\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)

\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

14 tháng 10 2018

Còn câu F bạn ơi. Giúp Gk vs

29 tháng 6 2017

\(A=x^2+2y^2-2xy+4x-2y+12\)

\(=\left(x^2-2xy+4x\right)+2y^2-2y+12\)

\(=\left[x^2-2x\left(y-2\right)+\left(y-2\right)^2\right]+2y^2-2y+12-\left(y-2\right)^2\)\(=\left(x-y+2\right)^2+2y^2-2y+12-y^2+4y-4\)

\(=\left(x-y+2\right)^2+\left(y^2+2y+1\right)+7\)

\(=\left(x-y+2\right)^2+\left(y+1\right)^2+7\ge7\)

Vậy \(Min_A=7\) khi \(\left[{}\begin{matrix}x-y+2=0\\y+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x+1+2=0\\y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

19 tháng 8 2017

đề thiếu nha bn

27 tháng 7 2017

ta có D=x^2 +2.y^2 -2xy+4x-5y-12

<=>D=(x^2 +y^2 +4 -2xy-4y+4x) +[y^2 -2.y.(1/2) +1/4] -1/4+8

<=>D=(x-y+2)^2 +(y-1/2)^2  +31/4

mà (x-y+2)^2 >= 0 và (y-1/2)^2>=0 nên (x-y+2)^2 +(y-1/2)^2 +31/4 >= 31/4

dấu '=' xảy ra khi :y-1/2=0 và x-y+2=0 <=> y=1/2 và x=-3/2

vậy GTNN của D là 31/4 khi x=-3/2, y=1/2