Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(1\right)=5-2-3+4\)
\(=0\)
\(\Rightarrow f\left(1\right)⋮x-1\)
Vậy ...
a) \(f\left(-1\right)=5.\left(-1\right)^3-2.\left(-1\right)^2-3.\left(-1\right)+4\)
\(=-5-2+3+4\)
\(=0\)
Vậy x=-1 là nghiệm của đa thức f(x)
b) \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=-\left(a-b+c-d\right)\)
\(=-\left[\left(a+c\right)-\left(b+d\right)\right]\)
\(=0\)( vì a+c=b+d nên (a+c) - (b+d) =0 )
Vậy x=-1 là nghiệm của đa thức f(x)
P(0)=-1=> c=-1
P(1)=3=>a+b+c=3=>a+b=4
P(2)=1=>4a+2b+c=1=>4a+2b=2=>2a+b=1=>a=1-4=-3
=>b=4-(-3)=7
Ta có: P(0) = a.02 + b.0 + c = -1
=> c = -1
P(1) = a.12 + b . 1 + c = 3
=> a + b + c = 3
Mà c = -1 => a + b = 3 - (-1) = 4 (1)
P(2) = a.22 + b.2 + c = 1
=> 4a + 2b + c = 1
Mà c = -1 => 2.(2a + b) = 1 - (-1) = 2
=> 2a + b = 2 : 2
=> 2a + b = 1 (2)
Từ (1) và (2) trừ vế với vế, ta có :
(a + b) - (2a + b) = 4 - 1
=> a + b - 2a - b = 3
=> (a - 2a) + (b - b) = 3
=> -a = 3
=> a = -3
Thay a = -3 vào (1) , ta được :
-3 + b = 4
=> b = 4 - (-3)
=> b = 7
Vậy a = -3; b = 7; c = -1
\(M\left(1\right)=a+b+6=0\left(1\right)\)
\(M\left(-2\right)=4a-2b+6=0\left(2\right)\)
\(\Rightarrow2.M\left(1\right)=2a+2b+12=0\left(3\right)\)
Lấy (2) cộng (3) ta được: \(6a+18=0\)
\(\Rightarrow a=-3\)
Thay a=-3 vào (1) ta được \(-3+b+6=0\)
\(\Rightarrow b=-3\)
\(\Rightarrow M\left(1\right)=a+b+6\)(1)
MÀ 1 LÀ NGHIỆM NGUYÊN CỦA PT\(\Rightarrow a+b+6=0\)
TƯƠNG TỰ TA CÓ \(4a+-2b+6=0\)
\(\Rightarrow a+b=4a-2b\Rightarrow3a=3b\Rightarrow a=b\)(2)
THAY VÀO (1)TA ĐƯỢC \(a+a=-6\Rightarrow a=-3\)(3)
TỪ (2)VÀ (3)\(\Rightarrow a=b=-3\)
ko biết đúng hay sai .....
\(H=\left|x-3\right|+\left|4+x\right|\)
\(H=\left|3-x\right|+\left|4+x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi ( có 2 trường hợp )
TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)
TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)
Vậy Hmin = 7 khi và chỉ khi -3 < x < 3
Ta có:
\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)
\(H=\left|x-3\right|+\left|4+x\right|\)
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)
\(\Rightarrow H\ge3-x+4+x=7\)
\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)
Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)
Theo bài ra ta có :
\(x=1\)
\(\left|y\right|=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
TH1 : Ta thay x = 1 và y = 1 ta đc đa thức sau :
\(a.1^2.1^2+b.1^2.1^4+c.1.1^3=a+b+c\)
TH2 : Ta thay x = 1 và y = -1 ta đc đa thức sau :
\(a.1^2\left(-1\right)^2+b.1^2.\left(-1\right)^4+c.1.\left(-1\right)^3=a+b-c\)