K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

          P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017

          P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019

          P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019

Mà x + y = 2 => x + y - 2 = 0

Thay x + y - 2 = 0 và đa thức P, ta được:

P = x. 0 - y . 0 + 0 + 2019

P = 0 - 0 + 0 + 2019

P = 2019

Vậy P = 2019 tại x + y = 2

# Học tốt #

30 tháng 10 2019

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(x+y-2\right)+2019\)

\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(P=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(P=0+2019=2019\)

21 tháng 12 2021

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)

\(\Rightarrow M=0+2019\)

\(\Rightarrow M=2019\)

24 tháng 2 2022

13 tháng 1 2022

M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019

M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019

13 tháng 1 2022

\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)

\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)

\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)

\(M=x^2.0-y.0+0+2019\)

\(M=0-0+0+2019\)

\(M=2019\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

22 tháng 5 2022

ko trả lời thì thôi đừng nhắn bậy

 

22 tháng 5 2022

đúng ko trả lời cứ nhắn bậy

30 tháng 5 2020

Ta có  M = x+ x2y - 2x2 - xy - y+3y + x + 2017

               = x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019

thay x + y - 2 = 0 vào M ta có :  M = x2.0 - y.0 + 0 + 2019

                                                      = 2019

13 tháng 6 2020

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)

Thay \(x+y-2=0\)vào đa thức ta được:

\(M=0.\left(x^2-y+1\right)+2019=2019\)

DD
20 tháng 5 2022

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)

\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)

\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)

\(=x+y+2019=2021\)

21 tháng 5 2022

1q