Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
3A-A= 3^2+3^3+....+3^101-3 -3^2-3^3-....-3^100
A= (3^101-3 ) :2
A = 3 + 32 + 33 + .... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
Ủng hộ mk nha !!! ^_^
\(A=1-3+3^2-3^3+...-3^{2021}+3^{2022}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\)
\(\Rightarrow3A+A=4A\)
\(=\left(1-3+3^2-3^3+...-3^{2021}+3^{2022}\right)+\left(3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\right)\)
\(=1+3^{2023}\)
\(\Rightarrow4A-3^{2023}=1+3^{2023}-3^{2023}=1\)
cảm ơn bạn