K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

x^2-2xy-4z^2+y^2 =(x^2-2xy+y^2)-(2z)^2 =(x-y)^2-(2z)^2 =(x-y-2z)(x-y+2z) Tại x=6;y=-4;z=45 bt có gái trị là (6+4-2.45).(6+4+45)=-80.100=-8000 Vậy bt có giá trị là -8000

7 tháng 10 2017

x2 - 2xy - 4z2 + y2 tại x = 6 ; y = -4 ; z = 45

= x2 - 2xy + y2 - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y + 2z ) ( x - y - 2z )

Thay x = 6 ; y = -4 ; z = 45 vào biểu thức , ta có :

( x - y + 2z ) ( x - y - 2z )

= ( 6 + 4 + 2 . 45 ) ( 6 + 4 - 2 . 45 )

= 100 . ( -80 )

= -8000

26 tháng 6 2021

Ta có: \(x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-4z^2\)

\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)

\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)

26 tháng 6 2021

x2 - 2xy + y2 - 4z2

= (x - y)2 - (2z)2

= (x - y - 2z) (x - y + 2z)

Thay x = 6 ; y = -4 và z = 45 vào biểu thức ta được:

[6 - (-4) - 2 . 45] [6 - (-4) + 2 . 45]

= -80 . 100

= -8000

21 tháng 8 2021

a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)

 

 

a: Ta có: \(x^2-2xy+y^2-4z^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)

\(=-8000\)

b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)

\(=3x^2+12x-63+x^2-8x+16+48\)

\(=2x^2+4x+1\)

\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)

\(=\dfrac{7}{2}\)

21 tháng 7 2015

A= x^2 -2xy + y^2 - (2z)^2 

  = ( x- y)^2 - (2z)^2

  = ( x-y - 2z)(x - y +2z)

= ( 6 - (-4) - 2.4,5) ( 6 - (-4) + 2.4,5)

= ( 10 - 90)( 10 + 90 )

= -80.100  

=-8000

5 tháng 10 2015

a)x2-2xy-4x2+y2

= (x2-2xy+y2)-(2x)2

(x-y)2-(2x)2 = (x-y-2x)(x-y+2x)(1)

Thay x=6; y=-4; z=45 ta được:

(1)<=>(6+4-90)(6+4+90)= (10-90).(10+90)=-80.100= -8000

 

 

21 tháng 9 2017

\(x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(=\left(x-y\right)^2-\left(2x\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay x=6 ; y=-4 ; z=45 vào biểu thức trên ta được:

\(\left(x-y-2z\right)\left(x-y+2z\right)\)

\(=\left(6-4-45.2\right)\left(6-4+2.45\right)\)

\(=\left(2-90\right)\left(2+90\right)\)

=\(-8096\)

18 tháng 8 2019

\(x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-4z^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)  ( 1 )

Thay vào bấm máy tính ta được ( 1 )=19

18 tháng 8 2019

b) \(3\left(x-3\right)\left(x+7\right)-\left(x-4\right)^2\)

\(=\left(3x-9\right)\left(x+7\right)-\left(x^2-8x+16\right)\)

\(=3x^2+12-63-x^2+8x-16\)

\(=2x^2+20x-79\)

\(=2x^2+20x+50-129\)

\(=2\left(x+5\right)^2-129\)

Thay x vào 

30 tháng 5 2017

a) \(x^2-2xy-4z^2+y^2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)

\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)

\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)

Tại x=6, y=-4, z=45

\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)

b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)

\(\Leftrightarrow4x^2+8x-11\)

Tại x=0,5 ta có:

\(4.\left(0,5\right)^2+8.0,5-11=-6\)

a)Đặt \(A=x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay \(x=6;y=-4;z=45\) vào A, ta có:

\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)

\(=100\cdot\left(-80\right)\)

\(=-8000\)

Vậy \(A=-8000\)

b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)

\(=3x^2+12x-63+x^2-4x+52\)

\(=4x^2+8x-11\)

Thay \(x=0,5\) vào B, ta có:

\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)

\(=1\cdot4-11\)

\(=-6\)

Vậy \(B=-6\)