Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
mình biết câu b rồi nhưng câu a thì chưa!
b) x^3(x+y)-x^2(x^2+xy)-x(x-y)
=x^4+x^3y-x^4-x^3y-x^2+xy
=-x^2+xy tại x=10,y=-5 ta có;
=-10^2+10(-5)
= 50
Bài 2:
a.
\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)
\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)
b.
\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)
\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)
\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)
Bài 1:
\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)
\(=-x+1=-(x-1)=-(999-1)=-998\)
Thay x = 35/6 vào biểu thức trên ta có :
\(\left(\frac{35}{6}\right)^2+\frac{1}{3}.\frac{35}{6}+\frac{1}{36}=\frac{1225}{36}+\frac{35}{18}+\frac{1}{36}=36\)
Thay x = 100 ; y = 1 vào biểu thúc trên ta có :
\(100^2-1^2+2.1-2=10000-1+2-2=9999\)
Thay \(x=\frac{35}{6}\)vào biểu thức trên ta có :
\(\left(\frac{35}{6}\right)^2+\frac{1}{3}\cdot\frac{35}{6}+\frac{1}{36}\)
\(=\frac{1225}{36}+\frac{35}{18}+\frac{1}{36}=\frac{1225}{36}+\frac{70}{36}+\frac{1}{36}=\frac{1296}{36}=36\)
Thay x = 100,y = 1 vào biểu thức trên ta có :
1002 - 12 + 2.1 -1 = 1002 - 1 + 2 - 1 = 1002 - 1 + 1 = 1002 = 10000
\(=\dfrac{\left(3\cdot\dfrac{5}{6}+\dfrac{12}{7}:\dfrac{5}{6}:\dfrac{25}{36}\right)}{\dfrac{5}{6}:\dfrac{12}{7}}=\dfrac{9559}{1750}:\dfrac{35}{72}=\dfrac{688248}{61250}\)