Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
Giải:
Ta có: \(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\left(x+2\right)=2\left(y+3\right)\)
\(\Rightarrow3x+6=2y+6\)
\(\Rightarrow3x=2y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k,y=3k\)
Lại có: \(A=\frac{x^2+y^2}{xy}=\frac{\left(2k\right)^2+\left(3k\right)^2}{2k3k}=\frac{4k^2+9k^2}{6k^2}=\frac{\left(4+9\right)k^2}{6k^2}=\frac{13}{6}\)
Vậy \(A=\frac{13}{6}\)
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!
Ta có:
\(x^2-2y^2-xy=0\)
<=>\(\left(x^2-y^2\right)-\left(y^2-xy\right)=0\)
<=>\(\left(x-y\right)\left(x-y\right)-y\left(x+y\right)=0\)
<=> \(\left(x-y\right)\left(x-2y\right)=0\)
<=> x - 2y = 0 ( do x+y khác 0 )
<=> x =2y
Thay vào đề bài ta có
Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Từ \(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\)
\(\Rightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-y\right)-y.\left(x-y\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-2y\right)=0\)
\(\Rightarrow x=2y\)
Thay vào đã dc:\(Q=\frac{1}{3}\)
\(\dfrac{x^2-y^2}{x^2+xy}=\dfrac{x-y}{x}\)
\(\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy}=\dfrac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(\Leftrightarrow x^2+xy=x\left(x+y\right)\)
\(\Leftrightarrow x\left(x+y\right)=x\left(x+y\right)\)( luôn đúng )
Vậy x; y đúng với x; y khác 0
Cảm ơn bn!