K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 

3A = 1.2.( 3 + 0 ) + 2.3.( 4 - 1 ) + .. + 99.100.( 101 - 98 ) 

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100 

3A = 99.100.101 

A = ( 99.100.101 ) : 3 = 333300 

Vậy A = 333300

8 tháng 10 2019

mk làm câu b

A=1.2+2.3+3.4+.......+99.100

3.A =3.1.2+2.3.3+3.4.3+............+99.100.3

3.A= 1.2.3+2.3.(4-1)+3.4.(5-2) +..........+99.100.(101-98)

3.A=1.2.3+2.3.4-1.2.3 +3.4.5-2.3.4+............+99.100.101-98.99.100

vì cứ +2.3.4  lại -2.3.4 cứ như thế

3.A=99.100.101

A=(99.100.101):3

A=333300

chúc bạn may mắn trong học tập 

mk vừa học xong

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 12 2016

Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]

\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)

\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)

\(\Rightarrow\)3A=n.(n+1)(n+2)

\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)

3 tháng 12 2015

3A = 1.2.( 3 -0) + 2.3.(4-1) + 3.4.(5-2) +....+ n(n+1) [ (n+2) - ( n-1)]

     = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ....+ n(n+1)(n+2) - (n-1)n(n+1)

    = n(n+1)(n+2)

A =n(n+1)(n+2) : 3 

21 tháng 2 2023

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

21 tháng 2 2023

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

16 tháng 8 2015

3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n-1)(n+2)]

3A=1.2.3-0.1.2+2.3.4-1.2.3+...n.(n+1)(n+2)-(n-1)n(n+1)

  A=n(n+1)(n+2):3
 

1 tháng 8 2015

cách mình đúng;

3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3

16 tháng 5 2019

Câu hỏi của nguyễn huy bảo - Toán lớp 7 - Học toán với OnlineMath

16 tháng 5 2019

Giải :

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

3 tháng 2 2017

b) B = 22 + 42 + 62 + ... + 982 

 \(\frac{1}{4}B=1^2+2^2+3^2+...+49^2\) 

\(\frac{1}{4}B=1+2\left(1+1\right)+3\left(2+1\right)+...+49\left(48+1\right)\) 

\(\frac{1}{4}B=1+2+1.2+2.3+3+...+48.49+49\) 

\(\frac{1}{4}B=\left(1+2+3+...+49\right)+\left(1.2+2.3+...+48.49\right)\) 

đặt A = 1.2 + 2.3 +...+ 48.49 ta có:

A = 1.2 + 2.3 +...+ 48.49

3A = 1.2.3 + 2.3.( 4 - 1) + ... + 48.49.( 50 - 47 )

3A = 1.2.3 + 2.3.4 - 1.2.3 +...+ 48.49.50 - 47.48.49

3A = 48.49.50

A = \(\frac{48.49.50}{3}=39200\)  

thay A = 39200 vào \(\frac{1}{4}B\) ta có:

\(\frac{1}{4}B=\left(1+2+3+...+49\right)+39200\) 

\(\frac{1}{4}B=1225+39200\)

 \(\frac{1}{4}B=40425\) 

B = 40425.4

B = 161700

vậy B = 161700

2 tháng 2 2017

3A=1.2.3+2.3.4+3.4.3+.......+99.100.3

3A=1.2.(3-0) + 2.3 (4-1) + 3.4 . (5-2)+.......+ 99.100(101-98)

3A=(1.2.3+2.3.4+3.4.5+......+98.99.100)-(0.1.2+1.2.3+.....+98.99.100)

3A=99.100.101-0

3A=999900

A=999900:3

A=333300