K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

f(2016)=2016^8 - 2017*2016^7 +2017*2016^6 - 2017*2016^5 +...+2017*2016^2 - 2017*2016+ 2018

=2016^8 -( 2016^8 + 2016) + (2016^7+2016) - (2016^6 + 2016)+....+2016^3+2016 -( 2016^2 + 2016)+2018

=2018

23 tháng 3 2018

mình đọc chả hiểu gì 

có bạn nào giải chi tiết ra được không

20 tháng 6 2016

Dễ thầy 2017=2016+1=x+1

Thay vào ta có:

\(x^{10}-2017x^9+2017x^8-.....+2017x^2-2017x+2017\)

\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-....+\left(x+1\right)x^2-\left(x+1\right)x+2017\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-....+x^3+x^2-x^2-x+2017=-x+2017=-2016+2017=1\)

Vậy..........

thanks bn!!

456545756858768978087

21 tháng 6 2017

f﴾2016﴿=2016^8 ‐ 2017*2016^7 +2017*2016^6 ‐ 2017*2016^5 +...+2017*2016^2 ‐ 2017*2016+ 2018

=2016^8 ‐﴾ 2016^8 + 2016﴿ + ﴾2016^7+2016﴿ ‐ ﴾2016^6 + 2016﴿+....+2016^3+2016 ‐﴾ 2016^2 + 2016﴿+2018

=2018

21 tháng 6 2017

Cho mình hỏi: x = ? 

13 tháng 6 2016

x=2016 =>x+1=2017

Thay 2007=x+1 vào A ................................................. tự típ

13 tháng 6 2016

=1 phải ko 

20 tháng 10 2017

\(A=x^3+2x^2+3x\\ =x\left(x^2+2x+1\right)\\ =x\left(x+1\right)^2\\ =1999.\left(1999+1\right)=1999.2000\\ =3998000\)

\(B=x^4-2017x^3+2017x^2-2017x+2018\\ =x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2016+2\\ =x^3\left(x-2016\right)-x^3\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+2\\ =\left(x-2016\right)\left(x^3+x-1\right)+2=0+2=0\)

Bạn xem lại đề câu a nhé , theo mk thì phải là 2 thì tính ms nhanh đc, 3 thì cũng giải đc nhưng ko hợp lí lắm

2 tháng 11 2019

2017 = 2016 + 1 = x + 1

suy ra 2017x15 = x16 + x15

2017x14 = x15 + x14

.... 

từ đó ta dễ tính ra A

14 tháng 2 2017

có lẽ =1

14 tháng 2 2017

à nhầm 2016/2017

24 tháng 6 2017

Bài 1:

\(N=\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2017\)

\(=x^{2n}-2x^n+x^n-2-x^{2n}+x^n+2017\)

\(=2017\)

\(\Rightarrowđpcm\)

Bài 2:

\(A=-2\left(n+1\right)+n\left(2n-3\right)\)

\(=-2n^2-2n+2n^2-3n\)

\(=-5n⋮5\forall n\in Z\)

\(\Rightarrowđpcm\)

Bài 3:

\(A=x^8-2017x^7+2017x^6-2017x^5+...-2017x+2017\)

\(=x^8-2016x^7-x^7+2016x^6+x^6-2016x^5-x^5+2016x^4+...-2016x-x+2016+1\)

\(=x^7\left(x-2016\right)-x^6\left(x-2016\right)+x^5\left(x-2016\right)-x^4\left(x-2016\right)+...-\left(x-2016\right)+1\)

\(=\left(x^7-x^6+x^5-x^4+...-1\right)\left(x-2016\right)+1\)

Thay x = 2016

\(\Rightarrow A=1\)

Vậy A = 1 khi x = 2016