Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
a)
\(\left[\left(-23\right).5\right]:5=-23\)
b)
\(\left[32.\left(-7\right)\right]:32=-7\)
a , [ ( - 23 ) x 5 ] : 5
= ( - 23 ) x 5 : 5
= ( - 23 ) x ( 5 : 5 )
= ( - 23 ) x 1
= - 23
b , [ 32 x ( - 7 ) ] : 32
= 32 x ( - 7 ) : 32
= 32 : 32 x ( - 7 )
= ( 32 : 32 ) x ( - 7 )
= 1 x ( - 7 )
= - 7
Đáp án là A
Thay x = 8 vào biểu thức ta được:
(27 - 32).x = (27 - 32).8
= [27 + (-32)].8 = [-(32 - 27)].8
= -5.8 = -40
a, A = 3 + 3 2 + 3 3 + . . . + 3 12 => 3A = 3 2 + 3 3 + . . . + 3 13
=> 3A - A = ( 3 2 + 3 3 + . . . + 3 13 ) - ( 3 + 3 2 + 3 3 + . . . + 3 12 )
=> 2A = 3 13 - 3 => A = 3 13 - 3 2
Vì A = 3 x - 3 2 => x = 13 => x+2016 = 2029
b, Số tập hợp con của tập A có x phần tử là 2 x
=> 2 x = 64 = 2 6 => x = 6. Vậy tập A có 6 phần tử
Thay x = 7 vào biểu thức ta được:
(7 - 5).(7 + 12) = 2.19 = 38
a, A = 1 + 3 + 32 + 33 +....+32022
3A = 3 + 32 + 33 +.....+32022 + 32023
3A - A = 32023 - 1
2A = 32023 - 1
2A - 22023 = 32023 - 1 - 22023
2A - 22023 = -1
b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)
x + 10 \(⋮\) x - 1
\(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1
11 \(⋮\) x - 1
x-1 \(\in\) { -11; -1; 1; 11}
x \(\in\) { -10; 0; 2; 12}
Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :
x \(\in\) { -10; 0; 2; 12}