Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592
A = 12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)
A = 1 + ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)
A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59
A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2
A = 1770
B = \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)
Đặt tử số là A
ta có
A = 22016 - 22015+22014 - 22013 + 22012 - 22011 + 22010- 22009
2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010
2A + A = 22017 - 22009
3A = 22017 - 22009
A = (22017 - 22009):3
B = A : 8 = (22017- 22009) : 3 : 8
B = (22017 - 22009) : 24
i don't now
mong thông cảm !
...........................
ta có pt trên <=> \(\frac{7-x}{2009}+1+\frac{5-x}{2011}+1+\frac{3-x}{2013}=0\)
<=> \(\frac{7-x}{2009}+\frac{2009}{2009}+\frac{5-x}{2011}+\frac{2011}{2011}+\frac{3-x}{2013}+\frac{2013}{2013}=0\)
<=> \(\frac{2016-x}{2009}+\frac{2016-x}{2011}+\frac{2016-x}{2013}=0\)
<=> \(\left(2016-x\right)\left(\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2013}\right)=0\)
do \(\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2013}\) >0
=> 2016-x=0
=> x=2016
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
Ta có: \(A=\sqrt{2013-x}+\sqrt{x-2011}\ge\sqrt{2013-x+x-2011}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}2013-x=0\\x-2011=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=2011\end{matrix}\right.\)(thỏa mãn)
Vậy min A = \(\sqrt{2}\Leftrightarrow\)x = 2013 hoặc x = 2011
Mặt khác \(A^2\le\left(1^2+1^2\right)\left(2013-x+x-2011\right)=4\)
\(\Rightarrow A\le2\)
Vậy maxA=2 khi\(x=2012\)(thỏa mãn)