Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\frac{14}{15}.\frac{20}{21}.\frac{41}{42}.....\frac{209}{210}\)
\(=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}.....\frac{19.22}{20.21}\)
\(=\frac{22}{6}=\frac{11}{3}\)
c) \(\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]:\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]:\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]:\left(\frac{5}{3}+\frac{14}{3}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right):\frac{19}{3}=\frac{73}{60}:\frac{19}{3}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
Bài giải
\(c,\text{ }\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]\text{ : }\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{56}{12}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right)\text{ : }\frac{19}{3}\)
\(=\left(\frac{190}{60}-\frac{117}{60}\right)\cdot\frac{3}{19}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)
\(-B=\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\)
\(-B=\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(-B=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\)
\(-B=\frac{1}{10}-1\)
\(-B=\frac{9}{10}\)
=> \(B=\frac{-9}{10}\)
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=-\frac{79}{90}\)
`Answer:`
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{6}{6}-\frac{1}{6}\right)\left(\frac{10}{10}-\frac{1}{10}\right)\left(\frac{15}{15}-\frac{1}{15}\right)...\left(\frac{210}{210}-\frac{1}{210}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}...\frac{209.2}{210.2}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{418}{420}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{19.22}{20.21}\)
\(=\frac{1.4.2.5.3.6...19.22}{2.3.3.4.4.5...20.21}\)
\(=\frac{\left(1.2.3...19\right)\left(4.5.6...22\right)}{\left(2.3.4...20\right)\left(3.4.5...21\right)}\)
\(=\frac{11}{30}\)