K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Do abc = 1 mà a + b + c = 1/a + 1/b + 1/c

=> a + b + c = ab + bc + ca

(a-1)(b-1)(c-1) = abc - ab - bc - ca + a + b + c - 1 = 0

=> P = (a-1)(b-1)(c-1)(a^28 +...+1)(b^2+b+1)(c^2017+...+1) = 0

18 tháng 7 2016

1) Thay xyz = 1  , ta có : 

 \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}=\frac{z}{z+xz+xyz}+\frac{xz}{xz+xyz+xyz^2}+\frac{1}{1+z+xz}\)

\(=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)

2) Phân tích A thành nhân tử được \(A=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)

Vì a + b + c = 0 nên A = 0

3) Phân tích  A thành  \(\frac{\left(b-a\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

18 tháng 7 2017

ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn

26 tháng 9 2017

Do ab + bc + ca = 1 nên ta có : 

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)

\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)

Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\)  (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)

Cộng vế với vế của (1) ; (2) ; (3) lại ta được :

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)

26 tháng 9 2017

khó thế bạn

7 tháng 3 2020

Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :

\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)

Do đó : \(M\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

7 tháng 3 2020

Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)

Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)

Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Áp dụng BĐT Svacxo ta có :

\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)   \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)

22 tháng 9 2019

Áp dụng BĐT AM-GM (Cô si): \(A\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(=3\sqrt[3]{\frac{1}{a\left(b+c\right).b\left(c+a\right).c\left(a+b\right)}}=\frac{3}{\sqrt[3]{\left(ab+ca\right)\left(bc+ab\right)\left(ca+bc\right)}}\)

\(\ge\frac{9}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

P/s: Check giúp em xem có ngược dấu không:v

22 tháng 9 2019

Cach khac 

Dat \(\left(ab;bc;ca\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x^2+y^2+z^2\ge3\\xyz\le1\end{cases}}\)

Ta co:

\(A=\frac{1}{ab+b^2}+\frac{1}{bc+c^2}+\frac{1}{ca+a^2}\)

\(=\frac{1}{x+\frac{xy}{z}}+\frac{1}{y+\frac{yz}{x}}+\frac{1}{z+\frac{zx}{y}}\ge\frac{9}{3+xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dau '=' xay ra khi \(a=b=c=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(a=b=c=1\)

17 tháng 11 2017

Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:

\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)

Với n = 1 thì nó đúng.

Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)

Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)

Từ (1) và (2) cái ta cần chứng minh trở thành:

\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)

\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)

Vậy ta có ĐPCM.

Áp dụng và bài toán ta được

\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)

\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)