K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Xét : Với mọi \(x\in N^{\text{*}}\) , ta có : \(\frac{1}{\left(x+1\right)\sqrt{x}+x\sqrt{x+1}}=\frac{1}{\sqrt{x\left(x+1\right)}\left(\sqrt{x}+\sqrt{x+1}\right)}=\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x\left(x+1\right)}}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\) 

Áp dụng vào tính : \(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

8 tháng 2 2018

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{99}+\sqrt{100}\)

\(=\sqrt{100}-1\)

\(=10-1\)

\(=9\)

Vì 9 chia hết cho 1; 3; 9 nên ko thể là số nguyên tố mà là hợp số.

=> ĐPCM

8 tháng 2 2018

Bạn ơi xem kĩ lại đề bài đi

21 tháng 7 2017

Ta có \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\Rightarrow A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)

\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)

\(\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}=\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\Rightarrow A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}\)

\(1+\frac{1}{a}-\frac{1}{a+1}\)

rồi bạn thay vào tổng trên là xong

6 tháng 8 2017

Với mọi n thuộc N ta có :

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)

16 tháng 7 2016

Ta xét biểu thức sau : 

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)

Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)

\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

16 tháng 7 2016

why the heck difficult

31 tháng 3 2019

A = \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{3+\sqrt{5}}.\sqrt{2}}{2}-\frac{\sqrt{5}-1}{2}\)

= \(\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)

16 tháng 6 2019

\(B=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(B=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}=-1+\sqrt{100}=10-1=9\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\sqrt{1+2.\frac{1}{a}+\frac{1}{a^2}+\frac{1}{(a+1)^2}-\frac{2}{a}}\)

\(=\sqrt{(1+\frac{1}{a})^2+\frac{1}{(a+1)^2}-\frac{2}{a}}=\sqrt{\frac{(a+1)^2}{a^2}+\frac{1}{(a+1)^2}-2.\frac{a+1}{a}.\frac{1}{a+1}}\)

\(=\sqrt{(\frac{a+1}{a}-\frac{1}{a+1})^2}=|\frac{a+1}{a}-\frac{1}{a+1}|=|1+\frac{1}{a}-\frac{1}{a+1}|\)

b)

Áp dụng công thức trên vào bài toán:

\(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)

\(=|1+\frac{1}{1}-\frac{1}{2}|+|1+\frac{1}{2}-\frac{1}{3}|+....+|1+\frac{1}{99}-\frac{1}{100}|\)

\(=99+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100})\)

\(=99+1-\frac{1}{100}=100-\frac{1}{100}\)

Y
17 tháng 6 2019

Sai đề nha bn \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)

\(A=\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}\)\(=\sqrt{\frac{a^2\left(a+1\right)^2+2a^2+2a+1}{a^2\left(a+1\right)^2}}\)

\(=\sqrt{\frac{\left[a\left(a+1\right)^2\right]+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}\) \(=\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{a^2\left(a+1\right)^2}}\)

\(=\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)

Áp dụng kết quả trên ta có :

\(B=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

\(=99+1-\frac{1}{100}=\frac{9999}{100}\)

11 tháng 7 2015

\(=\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{\sqrt{97}-\sqrt{99}}{97-99}\)

\(=\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}-\sqrt{7}+...+\sqrt{97}-\sqrt{99}}{-2}\)

\(=\frac{\sqrt{3}-\sqrt{99}}{-2}=\frac{\sqrt{99}-\sqrt{3}}{2}\)

11 tháng 7 2015

\(\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{\sqrt{97}-\sqrt{99}}{97-99}\) = \(\frac{-1}{2}.\left(\sqrt{3}-\sqrt{5}+\sqrt{5}-\sqrt{7}+...+\sqrt{97}-\sqrt{99}\right)\)

\(-\frac{1}{2}.\left(\sqrt{3}-\sqrt{99}\right)\) = \(\frac{3\sqrt{11}-\sqrt{3}}{2}\)

4 tháng 7 2017

\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)

1 tháng 7 2018

A = \(\frac{1}{1+\sqrt{2}}\) + \(\frac{1}{\sqrt{2}+\sqrt{3}}\) +  . . . . . . . .  . + \(\frac{1}{\sqrt{99+\sqrt{100}}}\)

\(\sqrt{2}\) -  1 + \(\sqrt{2}\) - \(\sqrt{3}\) + . . . . . . .  + \(\sqrt{100}\) - \(\sqrt{99}\)

= - 1 + \(\sqrt{100}\) =  \(\sqrt{100}\) - 1 = 10 - 1 = 9