Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy^2-3xy+x^2-4-C=xy^2-x^2+2y^2+1\)
\(\Rightarrow C=2xy^2-3xy+x^2-4-\left(xy^2-x^2+2y^2+1\right)\)
\(=2xy^2-3xy+x^2-4-xy^2+x^2-2y^2-1\)
\(=xy^2-3xy+2x^2-2y^2-5\)
Thay x = 2 và y = -1 vào C ta được :
\(C=2.\left(-1\right)^2-3.2.\left(-1\right)+2.2^2-2.\left(-1\right)^2-5=9\)
Vậy : Khi x = 2 và y = -1 thì giá trị của C là -9.
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Ta có: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-8=0\)
Do đó: C=0
thay x=2; y=-2 vào \(x^3-2y^2=2^3-2\left(-2\right)^2=8-8=0\)
\(\Rightarrow C=0\)
ko hiểu thì nhìn ở trên các số nhân với nhau nhưng mà lại có 1 thừa số =0 nên cả cái biểu thức =0