K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

\(P=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(P=2.\left(1-\frac{1}{2014}\right)\)

\(P=2.\frac{2013}{2014}\)

\(P=\frac{2013}{1007}\)

30 tháng 4 2016

\(P=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2013.2014}\)

\(P=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(P=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(P=\frac{1}{2}\left(1-\frac{1}{2014}\right)\)

\(P=\frac{1}{2}.\frac{2013}{2014}\)

\(P=\frac{2013}{4028}\)

8 tháng 5 2017

ĐẶT BIỂU THỨC LÀ A

Ta có công thức : \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức, ta có :

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(A=2.\left(1-\frac{1}{2014}\right)=2.\frac{2013}{2014}=\frac{2013}{1007}\)

Ai thấy đúng thì ủng hộ nha !!!

8 tháng 5 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2013.2014}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{2015}\right)=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)=2.\frac{2014}{2015}=\frac{4028}{2015}\)

28 tháng 8 2018

\(3C=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\)

\(3C=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30}\)

\(3C=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}+\frac{1}{28.29.30}\)

\(3C=\frac{1}{1.2.3}-\frac{1}{28.29.30}\Rightarrow C=\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right):3\)

29 tháng 4 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\) 

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

19 tháng 4 2016

A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)

A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)

A = 5( 1 - 1/100)

A = 5 . 99/100

A = 99/20

** k mk nha!

19 tháng 4 2016

\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)

2 tháng 3 2016

= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)

= 1/2 ( 1/2 - 1/2015.2016)

Tính tiếp p nhé.

18 tháng 8 2020

a) \(-\frac{8}{18}-\frac{15}{27}=-\frac{4}{9}-\frac{5}{9}=\frac{-9}{9}=-1\)

b) \(\frac{19}{24}-\left(-\frac{1}{2}+\frac{7}{24}\right)\)

\(=\frac{19}{24}+\frac{12}{24}-\frac{7}{24}=\frac{24}{24}=1\)

c) \(P=\frac{3^{11}.11+3^{11}.21}{3^9.2^5}\)

\(P=\frac{3^{11}.\left(11+21\right)}{2^9.2^5}=\frac{3^{11}.32}{2^9.32}=3^2=9\)

d) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)

27 tháng 7 2021

Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)

Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)

Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)

25 tháng 8 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

25 tháng 8 2020

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)