Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30
Gọi biểu thức phải tính bằng A,ta tính được:
3A=1/2.3 - 1/28.29.30 = 4059/28.29.30
vậy A = 1353/8120
a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{27.28}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\frac{405}{812}=\frac{405}{1624}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}=\frac{405}{1624}\)
b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\cdot\frac{1353}{8120}=\frac{451}{8120}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}=\frac{451}{8120}\)
\(c=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+...+\dfrac{1}{27.28.29.30}\)
\(3C=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\)
\(c=\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\)\(=\)\(\dfrac{1}{6}-\dfrac{1}{24360}\)
\(C=\) \(\dfrac{4059}{24360}\)
Ta có:
\(C=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+...+\dfrac{1}{27.28.29.30}\)
\(\Rightarrow3C=\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{27.28.29.30}\)
\(\Rightarrow3C=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3C=\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3C=\dfrac{1353}{8120}\)
\(\Rightarrow C=\dfrac{1353}{\dfrac{8120}{3}}=\dfrac{451}{8120}\)
Vậy \(C=\dfrac{451}{8120}\)
a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)
=\(\frac{1}{3}-\frac{1}{13}\)
=\(\frac{10}{39}\)
b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)
3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{6}-\frac{1}{24360}\)
3A=\(\frac{1353}{8120}\)
A=\(\frac{451}{8120}\)
P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100
P = 1/1-1/2-1/3-1/4+1/2-1/3-1/4-1/5 +....+1/97-1/98-1/99-1/100
P = 1/1-1/100
P = 99/100
Tính giá trị biểu thức P.3.98.99
Cái đó thì bạn tự tính cũng dc dễ mak
a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{100-98}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{100}{98.99.100}-\frac{98}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{4}-\frac{1}{19800}=\frac{4949}{19800}\)
b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)
\(=\frac{1}{3}(\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30})\)
\(=\frac{1}{3}(\frac{4}{1.2.3.4}-\frac{1}{1.2.3.4}+\frac{5}{2.3.4.5}-\frac{2}{2.3.4.5}+...+\frac{30}{27.28.29.30}-\frac{27}{27.28.29.30})\)
\(=\frac{1}{3}(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30})\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24360}\right)\)
\(=\frac{1}{3}.\frac{1353}{8120}\)
\(=\frac{451}{8120}\)
Đặt \(A=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
Ta có:
\(3A=\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{6}-\dfrac{1}{24360}\)
\(\Rightarrow3A=\dfrac{1353}{8120}\)
\(\Rightarrow A=\dfrac{1353}{\dfrac{8120}{3}}=\dfrac{451}{8120}\)
Vậy \(A=\dfrac{451}{8120}\)
Ta có: \(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)