Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
A=100+98+96+...+2−97−95−...1
A=100+(98−97)+(96−95)+...(2−1)
A=100+1+1+1+...+1
A=100+1.49
A=100+49
A=149
a, 100 + 98 + 96 + ... + 2 - 9 7 - 95 - .. -1
= 100 + (98 - 97) + (96-95) + ... + + ... + (2 - 1)
= 100 + 1 + 1 + 1 +.. +1
= 100 + 1 x 49
= 100 + 49
= 149
b , 1 + 2 - 3 - 4 + 5 + 6 - .... -299 - 330 +301 + 302
=( 1 + 2 - 3) + ( -4 + 5 + 6 -7 ) +... +(298 - 299 -300 +301 ) + 302
= 0 + 0 + .. + 0 + 302
= 302
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
A = ( 4/4 + 2/3 ) - ( 51/3 - 6/5 ) - ( 6 - 7/4 + 3/2 )
Sau đó quy đồng rồi trừ cả là đc
B tương tự
C=13/15
D cx thế . Bạn tự vận dụng đi . Xl vì ko giải đc . Mik đang gấp
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm