Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20013 + 20023 + 20033 + 20043 + 20053 + 20063 + 20073 + 20083 + 20093 = \(\sum\limits^{2009}_{2001}x^3\) = 72541712030
Bạn tham khảo :
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)
\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)
\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)
\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
TH1 : \(a+c=0\)
\(\Rightarrow a=-c\)
\(\Rightarrow c^{2006}=a^{2006}\)
\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)
\(=0\)
CMTT đều có \(P=0\)
Vậy ...
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)
\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)
- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)
- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)
- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)
Vậy \(P=0\)
Từ giả thiết suy ra: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)
\(\Rightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\) (a + b)[c(a + b + c) + ab] = 0
\(\Rightarrow\) (a + b)(ac + ab + bc + c2) = 0
\(\Rightarrow\) (a + b)(b + c)(a + c) = 0
P = (a2004 - b2004)(b2005 + c2005)(c2006 - a2006)
= (a + b)(b + c)(a + c) = 0
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
Áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n+1}\sqrt{n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)