K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

A = \(\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+...+\dfrac{3^2}{196.199}\)

A = \(\dfrac{3.3}{1.4}+\dfrac{3.3}{4.7}+...+\dfrac{3.3}{196.199}\)

A = \(3.\dfrac{3}{1.4}+3.\dfrac{3}{4.7}+...+3.\dfrac{3}{196.199}\)

A = \(3\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{196.199}\right)\)

A = \(3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{196}-\dfrac{1}{199}\right)\)

A = \(3\left(1-\dfrac{1}{199}\right)\) = \(3.\dfrac{198}{199}\) = \(\dfrac{594}{199}\)

27 tháng 4 2017

1)

a)

\(\dfrac{-5}{11}\cdot\dfrac{4}{7}+\dfrac{-5}{11}\cdot\dfrac{3}{7}-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot1-\dfrac{8}{11}\\ =\dfrac{-5}{11}-\dfrac{8}{11}\\ =\dfrac{-5}{11}+\dfrac{-8}{11}\\ =\dfrac{-13}{11}\)

b)

\(\left(\dfrac{2}{9}:\dfrac{5}{3}+\dfrac{1}{3}:\dfrac{5}{3}\right)^2-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =\left(\dfrac{2}{9}\cdot\dfrac{3}{5}+\dfrac{1}{3}\cdot\dfrac{3}{5}\right)^2-\left(\dfrac{-7}{24}\right)\\ =\left[\dfrac{3}{5}\cdot\left(\dfrac{2}{9}+\dfrac{1}{3}\right)\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{3}{5}\cdot\dfrac{5}{9}\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{1}{3}\right]^2+\dfrac{7}{24}\\ =\dfrac{1}{9}+\dfrac{7}{24}\\ =\dfrac{29}{72}\)

c) \(14-\left|\dfrac{-3}{4}\right|-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =14-\dfrac{3}{4}-\left(\dfrac{-7}{24}\right)\\ =14+\dfrac{-3}{4}+\dfrac{7}{24}\\ =13\dfrac{13}{24}\)

26 tháng 4 2020

Tách ra là xong nhé!!

S=1/2-1/100=49/100

P=1-1/94=93/94

k mình đúng với!!!!

6 tháng 3 2023

\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)

6 tháng 3 2023

`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`

`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`

`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`

`B=1-(1-1/2023)`

`B=1-1+1/2023=1/2023`

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

18 tháng 5 2018

A = \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{2015\cdot2016}\)

A = \(\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}\right)+\left(\dfrac{1}{2015\cdot2016}\cdot3\right)\)

A = \(\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}\right)+\left(\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)\cdot3\right)\)

A = \(\left(1-\dfrac{1}{43}\right)+\dfrac{1}{1354080}=\dfrac{42}{43}+\dfrac{1}{1354080}=\dfrac{56871403}{58225440}\)

17 tháng 5 2018

Giải:

\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{2015.2018}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=\dfrac{42}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)

\(\Leftrightarrow A=0,977240464-\dfrac{1}{2018}\)

\(\Leftrightarrow A=0,9767449238\approx0,98\)

Vậy ...