K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

Thay `x=2021` vào A: `A=2020.2021-2022 .2021^2 +2021^3=-2021`

22 tháng 7 2021

x=2021⇒2020=x-1; 2022=x+1, thay vào A ta có:

A=2020x-2022x2+x3

=(x-1)x-(x+1)x2+x3

=x2-x-x3-x2+x3

=x

=2021

4 tháng 2 2021

Ta có: \(x=2021\Rightarrow2020=x-1\)

Thay vào được:

\(A=x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x\)

\(A=x^4-x^4+x^3-x^3+x^2-x^2+x\)

\(A=x=2021\)

Vậy A  = 2021

4 tháng 2 2021

Ta có: \(x=2021\)\(\Rightarrow x-1=2020\)

Thay \(x-1=2020\)vào biểu thức A ta được:

\(A=x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x\)

\(=x^4-x^4+x^3-x^3+x^2-x^2+x\)

\(=x=2021\)

20 tháng 9 2021

1+1=mấy

20 tháng 9 2021

1+1=2 chứ bao nhiêu

4 tháng 10 2021

\(x=2021\Leftrightarrow x+1=2022\\ \Leftrightarrow P=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x\\ P=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x\\ P=0\)

4 tháng 10 2021

\(P=x^5-2022x^4+2022x^3-2022x^2+2022x-2021=x^4\left(x-2021\right)-x^3\left(x-2021\right)+x^2\left(x-2021\right)-x\left(x-2021\right)+\left(x-2021\right)\)

\(=\left(x-2021\right)\left(x^4-x^3+x^2-x+1\right)\)

\(=\left(2021-2021\right)\left(x^4-x^3+x^2-x+1\right)=0\)

 

16 tháng 9 2021

\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)

\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)

 

16 tháng 9 2021

cảm ơn cậu nhưng có thể cho mk hỏi luôn câu F nữa đc ko ạ

 

29 tháng 8 2018

Thay 2021 = x + 1 vào A

A = x6 - ( x + 1 ) .x5 + ( x + 1 ). x4  -  ( x + 1 ). x3 + ( x + 1 ) .x2 - ( x + 1 ) .x + ( x + 1 )

   = x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1

  = 1

Vậy A = 1