Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\left(x^2+2020\right)\left(x-10\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2020\ge2020\forall x\)
\(\Rightarrow\left(x^2+2020\right)\left(x-10\right)=0\)\(\Leftrightarrow x-10=0\)\(\Leftrightarrow x=10\)
Ta thấy: trong biểu thức \(P=\left(x^2-1\right)\left(x^2-2\right)\left(x^2-3\right)......\left(x^2-2020\right)\)có chứa thừa số \(x^2-100\)
Thay \(x=10\)vào thừa số \(x^2-100\)ta được: \(10^2-100=100-100=0\)
\(\Rightarrow P=0\)
Vậy \(P=0\)
Theo đề bài, ta có: (x^2+2020)(x-10)=0
Vì x^2 luôn lớn hơn hoặc bằng 0 nên x^2+2020>0
=> x-10=0
Khi đó P=(x^2-1)(x^2-2)...(x^2-100)(x^2-101)...(x^2-2020)
=> P=(10^2-1)(10^2-2)...(10^2-100)(10^2-101)...(10^2-2020)
=> P=0 < Vì 10^2-100=0>
Vậy P=0
Ta có :
\(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Thay \(x=-1\) và \(y=-2\) vào đa thức \(2x^8-3y^5+2\) ta được :
\(2\left(-1\right)^8-3\left(-2\right)^5+2\)
\(=\)\(2.1-3.\left(-32\right)+2\)
\(=\)\(2+96+2\)
\(=\)\(100\)
Vậy giá trị của đa thức \(2x^8-3y^5+2\) tại x, y thoã mãn điều kiện \(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\) là \(100\)
Chúc bạn học tốt ~
|x-1| +(y+2)^20=0
|x-1| \(\ge0\)
(y+2)^20 \(\ge\)0
=> |x-1| +(y+2)^20\(\ge\) 0
"=" xảy ra khi x=1 y=-2
Với x=1 y=-2 thay vào tính C
2x2+5 tại x2-x=0
Ta có :
x2-x=0
<=> x(x-1)=0
<=>\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
TH1: x=0
thay x=0 vào biểu thức 2x2+5 ta được:
2.(0)2+5
=5
vậy ...
TH2: x=1
Thay x=1 vào bt 2x2+5 ta đc :
2.12+5
=2+5
=7
vậy....
Bài làm:
\(\left|x-2\right|=0\Rightarrow x=2\)
Khi đó: \(A=2^2-2.2+2020=2020\)
Tính x \(|x-2|=0\Rightarrow x=0+2=2\) ( Vì bằng 0 nên chỉ có 1 nghiệm )
Thay \(x=2\) vào \(A=x^2-2x+2020\) ta có :
\(A=2^2-2.2+2020=4-4+2020=2020\)
Vậy giá trị \(A=x^2-2x+2020\) với \(|x-2|=0\) là \(2020\)