Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=-2x^2-3x+4=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{41}{8}\)
\(\Rightarrow B=-2\left(x+\frac{3}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)
\("="\Leftrightarrow x=-\frac{3}{4}\)
B = -2x2 - 3x + 5
B = -2( x2 + 3/2x + 9/16 ) + 49/8
B = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
1: Xét tứ giác BHCK có
CH//BK
BH//CK
Do đó: BHCK là hình bình hành
Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
2: Gọi giao điểm của IH và BC là O
Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH
Xét ΔHIK có
O là trung điểm của HI
M là trung điểm của HK
Do đó: OM là đường trung bình của ΔHIK
Suy ra: OM//IK
hay BC//IK
mà BC\(\perp\)IH
nên IH\(\perp\)IK
Xét ΔHOC vuông tại O và ΔIOC vuông tại O có
OC chung
HO=IO
Do đó: ΔHOC=ΔIOC
Suy ra: CH=CI
mà CH=BK
nên CI=BK
Xét tứ giác BCKI có IK//BC
nên BCKI là hình thang
mà CI=BK
nên BCKI là hình thang cân
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(x^3-3^3+x\left(2^2-x^2\right)=1\)
\(x^3-27+4x-x^3=1\)
\(4x-27=1\)
\(4x=28\)
\(x=7\)
Vậy x = 7
\(a,\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\\ \dfrac{5}{x^2+4x+4}=\dfrac{5}{\left(x+2\right)^2}=\dfrac{15}{3\left(x+2\right)^2}\\ b,\dfrac{5}{x^2-y^2+2x+1}=\dfrac{5}{\left(x-y+1\right)\left(x+y+1\right)}=\dfrac{5x}{x\left(x-y+1\right)\left(x+y+1\right)}\\ \dfrac{6}{x\left(x+y+1\right)}=\dfrac{6\left(x-y+1\right)}{x\left(x-y+1\right)\left(x+y+1\right)}\)
\(c,\dfrac{7x}{x^4-1}=\dfrac{7x}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}=\dfrac{7x\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\\ \dfrac{5x}{x^4+2x^2+1}=\dfrac{5x}{\left(x^2+1\right)^2}=\dfrac{5x\left(x-1\right)\left(x+1\right)}{\left(x^2+1\right)^2\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{258^2-242^2}{254^2-246^2}\)
\(=\frac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}\)
\(=\frac{16.500}{8.500}\)
\(=2\)
p/s: chúc bạn hk tốt