K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018
các bạn ơi, mình lộn 1 tí, trừ 3f... nha, ko phải là trừ f... mô
4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

16 tháng 4 2019

Ta có: 

f(x)=\(\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

 \(\Rightarrow f\left(1\right)=1-\frac{1}{2^2};f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2};...;f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x-1\right)^2}\)

=> \(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)

Theo bài ra ta có :

\(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)

<=> \(1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)

<=> 1=2y(x+1)-19+x

<=> (2y+1)(x+1)=21

x, y thuộc N => 2y+1, x+1 thuộc N

Ta có bảng

x+131721
2y+172131
x20620
y31010

Vậy....

17 tháng 4 2019

Cô Linh Chi:

phần bảng x không có giá trị bằng 0

Nếu x = 0 thì hàm số f (x) có giá trị bằng 0

AH
Akai Haruma
Giáo viên
18 tháng 3 2019

Lời giải:

Xét hàm \(f(x)=\frac{2x+1}{x^2(x+1)^2}\)

\(f(x)=\frac{x+(x+1)}{x^2(x+1)^2}=\frac{1}{x(x+1)^2}+\frac{1}{x^2(x+1)}=\frac{1}{x+1}(\frac{1}{x}-\frac{1}{x+1})+\frac{1}{x}(\frac{1}{x}-\frac{1}{x+1})\)

\(=\frac{1}{x^2}-\frac{1}{(x+1)^2}\)

Do đó:

\(s=f(1)+f(2)+f(3)+...+f(x)=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{x^2}-\frac{1}{(x+1)^2}\)

\(=1-\frac{1}{(x+1)^2}\)

Để \(s=\frac{2y(x+1)^3-1}{(x+1)^2}-19+x\)

\(\Leftrightarrow 1-\frac{1}{(x+1)^2}=2y(x+1)-\frac{1}{(x+1)^2}-19+x\)

\(\Leftrightarrow 1=2y(x+1)-19+x\)

\(\Leftrightarrow (2y+1)(x+1)=21\)

Vì $x,y$ nguyên dương nen $2y+1$ và $x+1$ cũng là các nguyên dương lớn hơn $1$. Do đó ta xét các TH sau:

\(\left\{\begin{matrix} 2y+1=3\\ x+1=7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1\\ x=6\end{matrix}\right.\)

\(\left\{\begin{matrix} 2y+1=7\\ x+1=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=3\\ x=2\end{matrix}\right.\)

Vậy............

19 tháng 3 2019

cho nik HOC24 nek

13 tháng 12 2019

F(-1) thì y= 6

F(2) thì y= 3

F(-1/2)= 3

Ta có : \(y=f\left(x\right)=2x^2-3x+1\)

\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)

\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)

\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)

25 tháng 5 2015

tại x = 1/2 ta có: \(2.f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2.\frac{1}{2}+1\) => \(3.f\left(\frac{1}{2}\right)=2\) => \(f\left(\frac{1}{2}\right)=\frac{2}{3}\)

Tại x = 2 ta có: \(2.f\left(2\right)+f\left(\frac{1}{2}\right)=2.2+1=5\)

=> \(2.f\left(2\right)=5-f\left(\frac{1}{2}\right)=5-\frac{2}{3}=\frac{13}{3}\)

=> \(f\left(2\right)=\frac{13}{3}:2=\frac{13}{6}\) 

25 tháng 5 2015

cách cô mới giải đúng đấy bạn

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

22 tháng 11 2015

f(0) = 2.0 - 1 = 0 - 1 = -1

f(-1) = 2.(-1) - 1 = -2 - 1 = -3

f(1) = 2.1 - 1 = 2 - 1 = 1

f(10) = 2.10 - 1 = 20 - 1 = 19