Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử B A D ^ =300
Kẻ BH ^ AD
Þ BH = 1 2 AB = 1cm.
Þ SABCD = 2SABD = BH.AD = 2cm2
Cho hình thoi ABCD có cạnh AB = 6cm, góc ∠A = 60o.
- Cách 1:
ΔABD là tam giác đều nên BD = AB = 6cm
I là giao điểm của AC và BD => AI ⊥ DB
⇒ AI là đường cao của tam giác đều ABD nên
- Cách 2:
Khi đó ΔABD là tam giác đều. Từ B vẽ BH ⊥ AD thì HA = HD.
Nên tam giác vuông AHB là nửa tam giác đều.
BH là đường cao tam giác đều cạnh 6cm, nên
Ta có : AB=BC (ABCD là hình thoi)
=> Tam giác ABC cân tại B
Mà góc B =60o
=> Tam giác ABC đều.
=> AB=BC=CA=6cm
BD=2BE=2.\(\dfrac{\sqrt{3}}{2}\).6=6\(\sqrt{3}\)cm (bạn tự c/m nhé, nó không khó đâu).
SABCD=\(\dfrac{1}{2}\).6.6.\(\sqrt{3}\)=18\(\sqrt{3}\)
nếu biết tính công thức tính hình thoi thì sẽ làm được bài này