Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ CH và DK vuông góc với AB
Ta có:
A K = B H = 1 2 A D = 1 c m
Từ đó: CD = 2,5cm
C H = 3 c m
S A B C D = A B + C D . C D 2 = 7 3 2 c m 2
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Đáp án cần chọn là: C
Ta có DH = 1 2 (CD – AB) = 1 2 (22 – 12)
Do ABCD là hình thang cân nên AD = BC = 13 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 13 2 - 5 2 ⇒ A H = 12
Vậy AH = 12cm.