Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương trình hoành độ giao điểm: x sin 2x = 2x <=> x (sin2x-2) = 0 <=> x = 0 hoặc sin2x = 2 (VN)
Chọn A.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = 2x - x2 và x + y = 2 là :
Miền cần tính diện tích được thể hiện bởi Hình 9 (học sinh tự làm)
Như vậy, với mọi x ∈ (-2;3) đồ thị của hàm số
nằm phía trên đồ thị của hàm số
Vậy ta có:
1.
\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)
\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)
\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\)
2.
\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)
\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)
\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)
\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)
1/6