K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2022

Có hình vẽ :  A B C D H K o

Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)

mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)

=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)

Khi 2 đường chéo vuông góc với nhau thì 

\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)

hay \(sin\alpha=1\)

Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm) 

24 tháng 9 2021

Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.

Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)

Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)

Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP

Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700 

Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)

Kết luận: ...

26 tháng 6 2017

a, Giả sử tam giác ABC có  A ^ < 90 0  kẻ đường cáo BH. Ta có BH=AB.sin A ^

=>  S ∆ A B C = 1 2 A C . B H =  1 2 A B . A C . sin A

b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có  A O B ^ = α < 90 0 . Kẻ AH ⊥ BD, tại H và CK ⊥ BD tại K

Ta có: AH = OA.sinα

=>  S A B D = 1 2 B D . A H =  1 2 B D . O A . sin α

Tương tự:  S C B D = 1 2 B D . C K =  1 2 B D . O C . sin α

=>  S A B C D = S A B D + S C B D =  1 2 B D . O A . sin α +  1 2 B D . O C . sin α =  1 2 B D . A C . sin α

30 tháng 3 2019

Gợi ý: Kẻ AH và CK vuông góc với BD