Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)
\(=5.\dfrac{60}{781}\)
\(=\dfrac{300}{781}\)
theo bài ra ta có:
\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)
5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))
= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))
= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))
= 5. \(\dfrac{6}{77}\)
= \(\dfrac{30}{77}\)
\(\frac{3}{15}\cdot G=\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{68\cdot71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{71}\)
\(G=\frac{60}{781}\cdot\frac{15}{3}\)
\(G=\frac{300}{781}\)
ta có :\(\frac{3}{15}G=\left(\frac{15}{11.14}+\frac{15}{14.17}+...+\frac{15}{68.71}\right)\)
\(\frac{3}{15}G=\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{71}=\frac{71}{781}-\frac{11}{781}=\frac{60}{781}\)
\(=>G=\frac{60}{781}:\frac{3}{15}=\frac{900}{2343}\)
vậy G =900/2343
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.......+\frac{15}{74.77}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+.......+\frac{3}{74.77}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+.....+\frac{1}{74}-\frac{1}{77}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(=5\left(\frac{7}{77}-\frac{1}{77}\right)\)
\(=5.\frac{6}{77}\)
\(=\frac{30}{77}\)
\(a,\dfrac{3}{5}+\dfrac{1}{5}.\dfrac{-17}{9}=\dfrac{3}{5}-\dfrac{17}{45}=\dfrac{27}{45}-\dfrac{17}{45}=\dfrac{10}{45}=\dfrac{2}{9}\\ b,\left(-\dfrac{4}{15}-\dfrac{18}{19}\right)-\left(\dfrac{20}{19}+\dfrac{11}{15}\right)=-\dfrac{4}{15}-\dfrac{18}{19}-\dfrac{20}{19}-\dfrac{11}{15}=\left(-\dfrac{4}{15}-\dfrac{11}{15}\right)-\left(\dfrac{18}{19}+\dfrac{20}{19}\right)=-1-2=-3\)
\(a,=\dfrac{3}{5}+\left(-\dfrac{17}{45}\right)=\dfrac{2}{9}\)
\(b,=-\dfrac{4}{15}-\dfrac{18}{19}-\dfrac{20}{19}-\dfrac{11}{15}=-3\)
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)
\(=\frac{64}{165}\)
pài này gần giống pài troq v15