Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}-\dfrac{4}{35}+\dfrac{5}{7}\right)-\dfrac{1}{41}=-\dfrac{1}{41}\)
\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}-\dfrac{1}{41}\)
\(=\dfrac{1}{2}+\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{5}{7}+\dfrac{1}{6}+\dfrac{-4}{35}+\dfrac{-1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}+\dfrac{-4}{35}\right)+\dfrac{-1}{41}\)
\(=1+1+\dfrac{-1}{41}\)
\(=2+\dfrac{-1}{41}=\dfrac{81}{41}\)
a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{12}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{4}+\dfrac{-2}{5}=\dfrac{-3}{20}\)
b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}=\left(\dfrac{-2}{3}-\dfrac{5}{6}\right)+\left(\dfrac{-1}{5}-\dfrac{-7}{10}\right)+\dfrac{3}{4}\)
\(=\dfrac{-3}{2}+\dfrac{1}{2}-\dfrac{3}{4}\)
= \(=-1-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
= \(\left(\dfrac{1}{2}-\dfrac{-1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-4}{35}+\dfrac{5}{7}-\dfrac{-2}{5}\right)+\dfrac{1}{41}\)
= \(1+1+\dfrac{1}{41}\)
= \(\dfrac{83}{41}\)
d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
= \(\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{98}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{1}\)
= \(\dfrac{1}{100}-\dfrac{1}{1}\)
= \(\dfrac{-99}{100}\)
d đảo 1/1.2.1/2.3 ... 1/99.1000
=1/1 -1/2 +1/2-1/3 ... -1/99 - 1/1000
=1/1 -1/1000
=999/1000
\(A=\dfrac{1}{2}+\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{5}{7}+\dfrac{1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)
\(=1+\dfrac{1}{41}+1=2+\dfrac{1}{41}=\dfrac{83}{41}\)
A=\(\dfrac{1}{2}\)-\(\left(\dfrac{-2}{5}\right)\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)-\(\left(\dfrac{-1}{6}\right)\)+\(\left(\dfrac{-4}{35}\right)\)+\(\dfrac{1}{41}\)
=\(\dfrac{1}{2}\)+\(\dfrac{2}{5}\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)+\(\dfrac{1}{6}\)-\(\dfrac{4}{35}\)+\(\dfrac{1}{41}\)
=\(\left[\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right]\)+\(\left[\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right]\)+\(\dfrac{1}{41}\)
= 1 + 1 +\(\dfrac{1}{41}\)
= \(\dfrac{83}{41}\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
\(-\dfrac{1}{2}-\dfrac{2}{5}-\dfrac{-1}{2}.\dfrac{5}{7}-\dfrac{1}{6}+\dfrac{4}{35}-\dfrac{1}{41}\)
=\(-\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{5}{14}-\dfrac{1}{6}+\dfrac{4}{35}-\dfrac{1}{41}=-\dfrac{1067}{1722}\)
có ngoặc ko