K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Ta có: \(S_{ABC}=\frac{1}{2}.a.h_a=\frac{1}{2}a.a.\sin60^o=\frac{a^2\sqrt{3}}{4}\) khi ABC là  tam giác đều.

Mà:\(S=p.r\Rightarrow r=\frac{S}{p}\) hay \(r=\frac{2S}{3a}=\frac{a\sqrt{3}}{6}=\frac{a}{2\sqrt{3}}\) 

\(\Rightarrow r=\frac{a}{2\sqrt{3}}=\frac{12,46}{2\sqrt{3}}\)

NV
30 tháng 7 2021

Gọi D, E, F lần lượt là tiếp điểm của (O) với BC, AC, AB

\(\Rightarrow OD\perp BC\) ; \(OE\perp AC\) ; \(OF\perp AB\)

Và \(OD=OE=OF=R\)

Ta có:

\(S_{ABC}=S_{OAB}+S_{OAC}+S_{OBC}\)

\(=\dfrac{1}{2}OF.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OD.BC\)

\(=\dfrac{1}{2}R.AB+\dfrac{1}{2}R.AC+\dfrac{1}{2}R.BC\)

\(=\dfrac{1}{2}R.\left(AB+AC+BC\right)\)

\(\Rightarrow45=\dfrac{1}{2}R.30\)

\(\Rightarrow R=3\left(cm\right)\)

NV
30 tháng 7 2021

undefined

27 tháng 7 2017

Ta có: \(S_{ABC}=\frac{1}{2}.a.h_a=\frac{1}{2}a.a.\sin60^o=\frac{a^2\sqrt{3}}{4}\) khi ABC là tam giác đều.

Mà \(S=\frac{abc}{4R}\Rightarrow R=\frac{abc}{4S}\) hay \(R=\frac{a^3}{4S}=\frac{a}{\sqrt{3}}\)

\(\Rightarrow R=\frac{a}{\sqrt{3}}=\frac{4,6872}{\sqrt{3}}\)

Đến đây bạn tự làm nhé!