Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác đều đã cho là tam giác ABC.
Kẻ đường cao AH . Tam giác ABC đều nên AH là đường trung tuyến => H là trung điểm của BC => BH = BC/2 = AB/2
Áp dụng ĐL Pi ta go trong tam giác vuông ABH có: AH2 = AB2 - BH2 = AB2 - AB2/4 = 3AB2/4 => AH = \(\frac{AB\sqrt{3}}{2}\)
S(ABC) = AH.BC/2 = \(\frac{AB^2\sqrt{3}}{4}=4\sqrt{3}\) => AB2 = 16 => AB = 4 cm
=> Chu vi tam giác đều ABC là: AB .3 = 12 cm
+) Tổng quát : Kí hiệu a là cạnh của tam giác đều => S tam giác đều = \(\frac{a^2\sqrt{3}}{4}\) (*)
+) Chu vi lục giác đều bằng 12 cm => cạnh của lục giác đều là: 12 : 6 = 2 cm
Chia lục giác đều thành 6 tam giác đều bằng nhau có cạnh bằng cạnh của lục giác đó
Áp dụng công thức (*) => Diện tích 1 tam giác = \(\frac{4\sqrt{3}}{4}=\sqrt{3}\) cm2
Diện tích lục giác = 6 x Diện tích 1 tam giác = \(6\sqrt{3}\) cm2
ĐS:...
a)Vì M là trung điểm BC (gt)
=> MB = MC
Xét △AMB và △AMC có
AB=AC (gt)
AM : cạnh chung
MB=MC (cmt)
=> △AMB = △AMC (c.c.c)
b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
Gọi chiều dài, chiều rộng của hình chữ nhật là a,b \(\left(ĐK:a>b>0\right)\)
Theo đề bài ta có:
\(2a-3b=2\left(1\right)\)
\(2\left(a+b\right)=42\Leftrightarrow2a+2b=42\left(2\right)\)
Lấy (1) trừ (2), ta có:
\(2a-3b-2a-2b=2-42\)
\(\Leftrightarrow-5b=-40\)
\(\Leftrightarrow b=8\left(m\right)\)
Thay\(b=8\)vào (2), ta có
\(2a+2.8=42\)
\(\Leftrightarrow2a+16=42\)
\(\Leftrightarrow2a=26\)
\(\Leftrightarrow a=13\left(m\right)\)
Vậy diện tích hình chữ nhật là \(a.b=13.8=104\left(m^2\right)\)