K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Nếu \(x=25\)

\(\Rightarrow\left\{{}\begin{matrix}26=x+1\\27=x+2\\47=2x-3\\77=3x+2;50=2x;24=x-1\end{matrix}\right.\) ( * )

Thay ( * ) vào C , ta được :

\(C=x^7-\left(x+1\right)x^6+\left(x+2\right)x^5-\left(2x-3\right)x^4-\left(3x+2\right)x^3+2x.x^2+x-\left(x-1\right)\)

\(=x^7-x^7-x^6+x^6+2x^5-2x^5+3x^4-3x^4-2x^3+2x^3+x-x+1\)

\(=1\)

Vậy \(C=1\) tại \(x=25\)

22 tháng 8 2017

Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy

Đặt S=xy=x(201−x)

Dễ có:1≤x≤200

S=200−(x−1)(x−200)≥0⇒Smin=200

Không mất tính TQ giả sử x≤y⇒x≤100

4 tháng 8 2018

x7-26x6+27x5-47x4-77x3+50x2+x-24

=x7-25x6-x6+25x5+2x5-50x4+3x4-75x3-2x3+50x2+x-24

= x6(x+(-25))-x5(x-25)+2x4(x-25)+3x3(x-25)

-2x2​(x-25)+x-24

Thay x=25 vào biểu thức :

=>25 -24=1

Vậy C=1

15 tháng 9 2021

Giá trị của biểu thức C tại x=25 là C(25).

Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.

Ta dùng sơ đồ Hooc-ne để tìm số dư này:

 1-2627-47-77501-24
x=251-123-2011


Vậy: C(25)=1 

15 tháng 9 2021

làm cách khác đi

 

29 tháng 7 2020

giúp mình với mọi người

29 tháng 7 2020

Giá trị của biểu thức C tại x=25 là C(25).

Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.

Ta dùng sơ đồ Hooc-ne để tìm số dư này:

 1-2627-47-77501-24
x=251-123-2011


Vậy: C(25)=1  (Bạn có thể dùng máy tính kiểm tra).

1 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

7 tháng 8 2018

13 tháng 11 2021

\(1,\Leftrightarrow x^2+10x+25=x^2-4x-21\\ \Leftrightarrow14x=-46\\ \Leftrightarrow x=-\dfrac{23}{7}\\ 2,\Leftrightarrow x^3+8=15+x^3+2x\\ \Leftrightarrow2x=-7\Leftrightarrow x=-\dfrac{7}{2}\\ 3,\Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x=-3\\ 4,\Leftrightarrow x^3-9x^2+27x-27=0\\ \Leftrightarrow\left(x-3\right)^3=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\\ 5,\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Leftrightarrow-12x=24\Leftrightarrow x=-2\\ 6,\Leftrightarrow x^2-3x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)