Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-98^2}{98^2}.\frac{1-99^2}{99^2}\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{98^2-1}{98^2}.\frac{99^2-1}{99^2}\)
= \(\frac{\left(2-1\right).\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right).\left(4+1\right)}{4^2}...\frac{\left(98-1\right)\left(98+1\right)}{98^2}.\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)
\(=\frac{\left(2-1\right).\left(3-1\right).\left(4-1\right)...\left(99-1\right)}{2.3.4...98.99}.\frac{\left(2+1\right).\left(3+1\right).\left(4+1\right)...\left(99+1\right)}{2.3.4...98.99}\)
\(=\frac{1.2.3....98}{2.3.4...98.99}.\frac{3.4.5...100}{2.3.4...98.99}\)
\(=\frac{1}{99}.\frac{100}{2}\)
\(=\frac{50}{99}\)
Chúc bạn học tốt !!!
\(A=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+\frac{4^2-3^2}{\left(3.4\right)^2}+...+\frac{100^2-99^2}{\left(99.100\right)^2}\)
\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{100^2}=\frac{9999}{10000}\)
a) Điều kiện : \(a\ne-b;b\ne1;a\ne-1\)
\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+a^2b+a-b}{1+a}\)
\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)
\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)
P = a + ab - b
b)
P = 3
<=> a + ab - b = 3
<=> a(b+1) - (b+1) +1 - 3 = 0
<=> (b+1)(a-1) = 2
Ta có bảng sau với a, b nguyên
b+1 | 1 | 2 | -1 | -2 |
a-1 | 2 | 1 | -2 | -1 |
b | 0 | 1 | -2 | -3 |
a | 3 | 2 | -1 | 0 |
so với đk | loại | loại |
Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}
1,tổng quát: (2k+1)/[k(k+1)^2]
=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2
áp dụng vào ,kết quả =2024/2025
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
\(\frac{150}{5.8}+\frac{150}{8.11}+\frac{150}{11.14}+.....+\frac{150}{47.50}\)
\(=50.\left(\frac{3}{5.8}+\frac{5}{8.11}+.....+\frac{3}{47.50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{47}-\frac{1}{50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(=50.\frac{9}{50}=9\)