Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A x 2 = 1/4 ( 1/4 + 1/8 + 1/16 + .......... + 1/512 ) - 1/512
A x 2 = 1/4 - A - 1/512
A x 2 - A = 1/4 - 1/512
A = 1/4 - 1/512
A = 127/512
1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1/2 - 1/4 + 1/4 - 1/8 + ... + 1/256 - 1/512
= 1/2 - 1/512
= 255/512
A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
Chúc bạn học giỏi nha!
gọi biểu thức đó là A
A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
1/512+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/512
1/512+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/256
1/512+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128
1/512+A=1/2+1/4+1/8+1/16+1/32+1/64+1/64
1/512+A=1/2+1/4+1/8+1/16+1/32+1/32
1/512+A=1/2+1/4+1/8+1/16+1/16
1/512+A=1/2+1/4+1/8+1/8
1/512+A=1/2+1/4+1/4
1/512+A=1/2+1/2
1/512+A=1
A=1-1/512
A=511/512
chắc 100%
Mình nghĩ đây là nâng cao tiểu học
Đặt S = 1/2 + 1/4 + 1/8 + 1/16 + ...
==> 2S = 1 + 1/2 + 1/4 + 1/8 + 1/16 + ...
2S = 1 + S
==> S = 1
Đây cũng là kết quả khi tính theo cấp số nhân khi n --> vô cùng
2A=1+1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
2A-A=1-1/1024
A=1-1/1024
A=1023/1024
A = 1/2 + 1/4 + 1/8 + ... + 1/1024
2A = 1 + 1/2 + 1/4 + ... + 1/512
2A - A = (1 + 1/2 + 1/4 + ... + 1/512) - (1/2 + 1/4 + 1/8 + ... + 1/1024)
A = 1 - 1/1024
A = 1023/1024
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{512}\)
\(\Rightarrow A=2A-A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
gọi A=1/2+1/4+1/8+...+1/1024
2xA=1+1/2+1/4+.....+1/512
2xA-A=(1+1/2+1/4+....+1/512)-(1/2+1/4+1/8+...+1/1024)
A=1-1/1024
=1023/1024
vậy A=1023/1024
\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{512}-\frac{1}{1024}=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(A=1-\frac{1}{512}=\frac{511}{512}\)
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(\Rightarrow2A=2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\right)\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\right)\)
\(\Rightarrow A=1-\frac{1}{512}\)
\(\Rightarrow A=\frac{511}{512}\)
~ rất vui vì giúp đc bn ~