Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1X2 +2x3 +...+ 2016x2107
3A = 1x2x3 + 2x3x3 + ...+ 2016x2017x3
3A = 1x2x(3-0) + 2x3x(4-1) + ... + 2016x2017x(2018-1)
3A = 1x2x3 - 1x2x0 +2x3x4 -1x2x3 +...+ 2016x2017x2018 - 2016x2017x2015
Ta loại trừ còn
3A = 2016x2017x2018 - 1x2x0
3A = 2016x2017x2018
A = 2016 x2017 x2018 : 3
A = 1x2 +2x3 +3x4 +...+ 2016 x 2017
3A = 1x2x3 + 2x3x3 +...+2016 x 2017 x3
3A = 1x2x(3-0) + 2x3x(4-1) +...+ 2016x2017x(2018-2015)
sửa đề \(C=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}\)
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=3\left(1-\frac{1}{2016}\right)=3.\frac{2015}{2016}=\frac{2015}{672}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{2015\times2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\frac{1}{1}-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(B=1.2+2.3+3.4+...+18.19\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+18.19.\left(20-17\right)\)
\(3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+18.19.20-17.18.19\)
\(3B=18.19.20\Rightarrow B=\frac{18.19.20}{3}=2280\)
Ta có : B = 1 x 2 + 2 x 3 + 3 x 4 +.... + 18 x 19
=> 3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 18 x 19 x 3
3B = 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 18 x 19 x (20 - 17)
3B = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x3 + 3 x 4 x5 - 2 x 3 x 4 + ... + 18 x 19 x 20 - 17 x 18 x 19
3B = 18 x 19 x 20
B = 18 x 19 x 20 : 3
= 2280
Vậy B = 2280
Đặt \(A=1.2+2.3+...+59.60\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+59.60.\left(61-58\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+59.60.61-58.59.60\)
\(\Rightarrow3A=59.60.61\)
\(\Rightarrow A=\frac{59.60.61}{3}\)
A = 1.2 + 2.3 + .... + 999.1000
3A = 1.2.3 + 2.3.(4-1) + .... + 999.1000.(1001 - 998)
3A = 1.2.3 + 2.3.4 - 1.2,3 +..... + 999.1000.1001 - 998.999.1000
3A = 999 . 1000 . 1001
A = 333 x 1000 x 1001 = 333 333 000
3A=1x2x3+2x3x(4-1)+3x4x(5-2)+.............+999x1000x(1001-998)
3A=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+............+999x1000x1001-998x999x1000
3A=999x1000x1001
A=999x1000x1001:3
A=333333000