K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

\(B=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2018}\)

\(\Rightarrow-\dfrac{1}{7}B=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2019}\)

\(\Rightarrow-\dfrac{1}{7}B-1=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2019}-\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^1-\left(-\dfrac{1}{7}\right)^2-...-\left(-\dfrac{1}{7}\right)^{2018}\)

\(\Rightarrow-\dfrac{8}{7}B=\left(-\dfrac{1}{7}\right)^{2019}-1\)

\(\Rightarrow B=\left[\left(-\dfrac{1}{7}\right)^{2019}-1\right]:\left(-\dfrac{8}{7}\right)\)

12 tháng 12 2021

\(B=1-\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}+...-\dfrac{1}{7^{2017}}+\dfrac{1}{7^{2018}}\\ \Rightarrow7B=7-1+\dfrac{1}{7}-\dfrac{1}{7^2}+...-\dfrac{1}{7^{2016}}+\dfrac{1}{7^{2017}}\\ \Rightarrow7B+B=6+\dfrac{1}{7}-\dfrac{1}{7^2}+...+\dfrac{1}{7^{2017}}+1-\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}+...-\dfrac{1}{7^{2017}}+\dfrac{1}{7^{2018}}\\ \Rightarrow8B=7+\dfrac{1}{7^{2018}}=\dfrac{7^{2019}+1}{7^{2018}}\\ \Rightarrow B=\dfrac{7^{2019}+1}{8\cdot7^{2018}}\)

25 tháng 11 2021

:) 

undefined

24 tháng 5 2017

\(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+....+\left(-\dfrac{1}{7}\right)^{2017}\\ =1+-\dfrac{1}{7}+\dfrac{1}{7^2}+-\dfrac{1}{7^3}+.....+-\dfrac{1}{7^{2017}}\\ =\left(1+\dfrac{1}{7^2}+\dfrac{1}{7^4}+...+\dfrac{1}{7^{2016}}\right)-\left(\dfrac{1}{7}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{2017}}\right)\)

rồi bạn tính 2 về rồi trừ ra là xng nhé

24 tháng 5 2017

bài này hình như ra 7/8

12 tháng 8 2017

\(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\\ S=\dfrac{\left(-1\right)^0}{7^0}+\dfrac{\left(-1\right)^1}{7^1}+\dfrac{\left(-1\right)^2}{7^2}+...+\dfrac{\left(-1\right)^{2017}}{7^{2017}}\\ S=\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\\ -7S=\dfrac{-7}{7^0}+\dfrac{7}{7^1}+\dfrac{-7}{7^2}+...+\dfrac{7}{7^{2017}}\\ -7S=\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\\ -7S-S=\left[\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\right]+\left(\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\right)\\ -8S=\left(-7\right)+\dfrac{-1}{2017}\\ -8S=-\left(7+\dfrac{1}{2017}\right)\\ 8S=7+\dfrac{1}{2017}\\ S=\dfrac{7+\dfrac{1}{2017}}{8}\)

Vậy ...

Bài 1: 

a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)

c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)

10 tháng 4 2018

https://hoc24.vn/hoi-dap/question/266859.html

25 tháng 12 2017

S= \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)

\(\left(-\dfrac{1}{7}\right)S=\left(-\dfrac{1}{7}\right)\left(-\dfrac{1}{7}+-\dfrac{1^2}{7}+..+-\dfrac{1^{2007}}{7}\right)\)

= \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\)

=>\(-\dfrac{1}{7}S-S=\) \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\) \(-\)\(\left(1+-\dfrac{1}{7}+-\dfrac{1^2}{7}+...+-\dfrac{1^{2007}}{7}\right)\)

=> \(-\dfrac{1}{7}S=\) \(\dfrac{-1^{2008}}{7}-1\)

=> S= \(\dfrac{-1^{2008}}{7}-1\) : \(\dfrac{-1}{7}\)

30 tháng 11 2017

Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi

30 tháng 11 2017

0 cần trả lời hết cũng đc

9 tháng 5 2017

mk ko chép đề đâu nha

\(S=1+\dfrac{-1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)

đặt \(7S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\)

=>\(7S+S=\left(7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}\right)+\left(1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\right)\)

=>\(8S=7-1+\dfrac{1}{7}+...+\dfrac{1}{7^{2015}}+1-\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{2016}}\)

=>\(8S=7+\left(-1+1\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+...+\left(\dfrac{1}{7^{2015}}-\dfrac{1}{7^{2015}}\right)+\dfrac{1}{7^{2016}}\)

=> \(8S=7+\dfrac{1}{7^{2016}}\)

\(\Rightarrow S=\dfrac{7+\dfrac{1}{7^{2016}}}{8}\)

9 tháng 5 2017

Gỉa sử : \(-\dfrac{1}{7}=a\)

Thay vào S ,có :

\(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) (1)

=> a.S = a( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) )

= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) (2)

Lấy (2) - (1) ,CÓ :

aS-S=( \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) ) - ( \(a^0+a^1+a^{2^{ }}+.........+a^{2016}\) ) aS-S= \(a^1+a^2+a^3+.........+a^{2016}+a^{2017}\) - \(1-a-a^2-.........-a^{2016}\)

aS-S = a2017 -1 => S(a-1) = a2017 -1

=> S = \(\dfrac{a^{2017}-1}{a-1}\)

Thay a= -1/7 vào S = \(\dfrac{a^{2017}-1}{a-1}\) ,có :

S = \(\dfrac{\left(\dfrac{-1}{7}\right)^{2017}-1}{-\dfrac{1}{7}-1}=\dfrac{\left(-\dfrac{1}{7}\right)^{2017}}{-\dfrac{8}{7}}\)

29 tháng 10 2021

3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)