Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}........\dfrac{-99}{100}.\dfrac{-120}{121}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.........\dfrac{9.11}{10^2}.\dfrac{10.12}{11^2}\)
\(=\dfrac{1.2.3.4.....10.3.4.5.6......11.12}{2^2.3^2........11^2}\)
\(=\dfrac{1.2.11.12}{2^2.11^2}=\dfrac{12}{22}\)
\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\\ \Rightarrow S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(M=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow S=2^{2010}-M\)
* Tính M
\(M=2^{2009}+2^{2008}+...+2+1\\ \Rightarrow2^0+2^1+...+2^{2008}+2^{2009}\\ \Rightarrow2S=2^1+2^2+...+2^{2009}+2^{2010}\\ \Rightarrow2S-S=\left(2^1+2^2+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\\ \Rightarrow S=2^{2010}-2^0=2^{2010}-1\)Thay M vào S, ta được :
\(S=2^{2010}-\left(2^{2010}-1\right)\\ \Rightarrow S=2^{2010}-2^{2010}+1\\ \Rightarrow S=1\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(1,A=\dfrac{1}{21}\\ 2,B=\dfrac{101}{200}\\ 3,a\in\left\{-14;-13;-12;-11;-10\right\}\\ 4,D=\dfrac{48}{7}\\ 5,E=-\dfrac{1}{3}\\ 6,F=2-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
Câu 8:
Ta có: \(A=2+2^2+2^3+2^4+...+2^{50}\)
\(\Leftrightarrow2\cdot A=2^2+2^3+...+2^{51}\)
\(\Leftrightarrow A=2^{51}-2\)
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)