Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi hình như đề bài là:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.
a)\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+....+\(\frac{1}{100.101}\)=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{100}\)-\(\frac{1}{101}\)=1-\(\frac{1}{101}\)=\(\frac{100}{101}\)
b)\(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+....+\(\frac{1}{28.29.30}\)=\(\frac{868}{3480}\)=\(\frac{217}{870}\)
c)\(\frac{1}{1.2.3.4}\)+\(\frac{1}{2.3.4.5}\)+....+\(\frac{1}{27.28.29.30}\)=\(\frac{24354}{438480}\)=\(\frac{451}{8120}\)
a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)
\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)
\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)
\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)
\(\Leftrightarrow A=1-\frac{1}{100!}\)
b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{9900}\)
A=49/51
Mình nhầm 49/1234