Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{3}=\frac{9b}{11}=\frac{6c}{-5}\Rightarrow\frac{a}{\frac{3}{2}}=\frac{b}{\frac{11}{9}}=\frac{c}{-\frac{5}{6}}\)\(=\frac{-4a}{-6}=\frac{3b}{\frac{11}{3}}=\frac{7c}{-\frac{35}{6}}=\frac{-4a+3b-7c}{-6+\frac{11}{3}+\frac{35}{6}}=\frac{-85}{\frac{7}{2}}\)\(=\frac{-170}{7}\)
* \(\frac{a}{\frac{3}{2}}=-\frac{170}{7}\Rightarrow a=\frac{-170}{7}.\frac{3}{2}=-\frac{255}{7}\)
*\(\frac{c}{-\frac{5}{6}}=-\frac{170}{7}\Rightarrow c=-\frac{170}{7}.\frac{-5}{6}=\frac{425}{21}\)
*\(\frac{b}{\frac{11}{9}}=-\frac{170}{7}\Rightarrow b=-\frac{170}{7}.\frac{11}{9}=-\frac{1870}{63}\)
b,
ab = c ; bc = 4a ; ac = 9b
=> ab.bc.ac = c.4a.9b
=> ( abc)^2 = 36abc
=> abc = 36
ab = c thay vào ta cso
=> abc = c . c = 36 => c^2 = 36 => c = 6 hoặc c - 6
(+) c = 6
a.b.c = 36 =>s.b.6 = 36 => a.b = 6
=> 6b = 4a => 3b = 2a => b/2 = a/3 = y => b = 2t ; a = 3t
a.b = 6 => 3t.2t = 6 => 6 t^2 = 6 =>t^2 = 1 => t = 1 hoặc t = - 1
(-) t = 1 => b = 2 ; a = 3
( -) t = -1 => b = - 2 ; a = - 3
VẬy có hai cạp a = 3 ; b = 2 ; c =6
và a = -3 ; b = -2 ;c = 6
(+) TH2 : c = -6
LÀm tương tự
ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= 2*3 = 6 (thỏa)
_với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= -2*3 = -6 (thỏa)
_với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)