K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

kho qua giai gan xong roi 

18 tháng 6 2016

Giúp với

18 tháng 6 2016

Chứng minh nếu a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

Do a/b < 1 => a < b

=> am < bm

=> am + ab < bm + ab

=> a.(b+m) < b.(a+m)

=> a/b < a+m/b+m

Áp dụng điều trên ta có: B = 1020 + 1/ 1021 + 1 < 1

=> B < 1020 + 1 + 9/1021 + 1 + 9

=> B < 1020 + 10/1021 + 10

=> B < 10.(1019 + 1)/10.(1020 + 1)

=> B < 1019+1/1020+1 = A

=> B < A

b) n + 1 chia hết cho n - 2

=> n - 2 + 3 chia hết cho n - 2

Do n - 2 chia hết cho n - 2

=> 3 chia hết cho n - 2

=> n - 2 thuộc { 1 ; -1 ; 3 ; -3}

=> n thuộc { 3 ; 1 ; 5 ; -1}

Vậy n thuộc { 3 ; 1 ; 5 ; -1}

2 tháng 5 2023

a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\)

Nếu \(n-3=1\Rightarrow n=4\)\(n-3=-1\Rightarrow n=2\)\(n-3=2\Rightarrow n=5\)\(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)

 \(A=\dfrac{n+4}{n+1}\) làm tương tự.

b) Dễ thấy các số ở mẫu có thể viết dưới dạng:

\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)

\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)

\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)

...

\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)

Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\) 

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=\dfrac{3}{8}\)