K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Cái này giải căn từ phải qua trái, tức là giải từ căn nhỏ đến căn lớn.

Ngại làm quá =))). Thôi làm cho 1 ý bạn tự suy ra nhé.

\(a.\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{12+2.\sqrt{12}.1+1}}}\)

\(=\sqrt{6+2\sqrt{5-\left|\sqrt{12}+1\right|}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)

\(=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)

\(=\sqrt{6+2\left|\sqrt{3}-1\right|}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{2\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

23 tháng 7 2018

a)\(\sqrt{6+2\sqrt{5-\sqrt{1+12+4\sqrt{3}}}}=\sqrt{6+2\sqrt{5-1-2\sqrt{3}}}=\sqrt{6+2\sqrt{3}-2}=\sqrt{1+3+2\sqrt{3}}=1+\sqrt{3}\)

b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-4\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

=\(\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

mk chỉ biết làm đến đấy thôi

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

27 tháng 7 2017

b) \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}-\sqrt{2}.\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}-\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{2}.\left(\sqrt{5}-1\right)\)

\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}=\dfrac{2\sqrt{5}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)

\(=\sqrt{10}-\sqrt{10}+\sqrt{2}=\sqrt{2}\)

e) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

câu a ; f chưa nghỉ ra

27 tháng 7 2017

co giup mk nha

19 tháng 9 2019

Đề thiếu nha:

\(E=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)(vì \(\sqrt{3}>1\))

\(=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)

19 tháng 9 2019

\(D=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(\Rightarrow D\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5+2\sqrt{15}+3}+\sqrt{5-2\sqrt{15}+3}-2\sqrt{5-2\sqrt{5}+1}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2=2\)

\(\Rightarrow D=\frac{2}{\sqrt{2}}=\sqrt{2}\)

24 tháng 6 2018

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\\ =\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}\\ =\sqrt{1}=1\)

\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12+1+2\sqrt{12}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\\ =\sqrt{6+2\sqrt{3+1-2\sqrt{3}}}\\ =\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{6+2\sqrt{3}-2}\\ =\sqrt{3+1+2\sqrt{3}}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-10\sqrt{3}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\\ =\sqrt{4+\sqrt{25}}=\sqrt{4+5}=\sqrt{9}=3\)

\(D=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\\ \text{Ta có }:\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2\\ =3+\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+3-\sqrt{5}\\ =6-2\sqrt{9-5}=6-2\sqrt{4}=6-4=2\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{2}\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)