Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+\sqrt{12}}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\frac{4+\sqrt{4^2-7}}{2}}+\sqrt{\frac{4-\sqrt{4^2-7}}{2}}-\left(\sqrt{\frac{4+\sqrt{4^2-7}}{2}}-\sqrt{\frac{4-\sqrt{4^2-7}}{2}}\right)+\left(\sqrt{3}+1\right)^2\)
( áp dụng công thức căn phức tạp )
\(=2\sqrt{\frac{4-3}{2}}+4+2\sqrt{3}\)
\(=\sqrt{2}+4+2\sqrt{3}\)
\(A=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\left(4-\sqrt{2}\right)}}}\)
\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{4+2\sqrt{3}}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)^2=\sqrt{2}+4+2\sqrt{3}\)
\(A=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2}{9\sqrt{3}-11\sqrt{2}}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(9\sqrt{3}+11\sqrt{3}\right)\left(5-2\sqrt{6}\right)^2\)
\(=\left(49+20\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2=\left(5+2\sqrt{6}\right)^2\left(5-2\sqrt{6}\right)^2=1\)
\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{4+5}=3\)
\(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
1,=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{12}+4}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
=\(\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{3}+1\)
d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
Đề thiếu nha:
\(E=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)(vì \(\sqrt{3}>1\))
\(=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(D=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow D\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{15}+3}+\sqrt{5-2\sqrt{15}+3}-2\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
\(\Rightarrow D=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(A=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\left(4-\sqrt{2}\right)}}}\)
\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{4+2\sqrt{3}}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)^2=\sqrt{2}+4+2\sqrt{3}\)