K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(B=2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(B=1.\left(1-\frac{1}{101}\right)\)

\(B=\frac{100}{101}\)

\(C=\frac{4}{4.7}+\frac{4}{7.10}+\frac{4}{10.13}+...+\frac{4}{73.76}\)

\(C=4.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)

\(C=4.\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)

\(C=\frac{4}{3}.\left(\frac{1}{4}-\frac{1}{76}\right)\)

\(C=\frac{4}{3}.\frac{9}{38}\)

\(C=\frac{6}{19}\)

22 tháng 2 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\\ =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\\ =1-\frac{1}{100}\\ =\frac{99}{100}\\ B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\\ =\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\\ =\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{4}{4.7}+\frac{4}{7.10}+....+\frac{4}{73.76}\\ =\frac{4}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{73.76}\right)\\ =\frac{4}{3}.\left(\frac{3}{4}-\frac{3}{76}\right)\\ =\frac{18}{19}\)

Học tốt Nghe!!

27 tháng 4 2019

1.

a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5.\left(1-\frac{1}{100}\right)\)

\(=5.\frac{99}{100}\)

\(=\frac{99}{20}\)

27 tháng 4 2019

b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}\)

\(=\frac{200}{101}\)

17 tháng 3 2018

a, 1/1.2+1/1.3+...+1/99.100

= 1-1/2+1/2-1/3+1/3+...+1/99-1/100

=1-1/100

=99/100

17 tháng 3 2018
ai nhanh mình k
DD
18 tháng 5 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

DD
18 tháng 5 2021

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

4 tháng 2 2017

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

4 tháng 2 2017

Câu b sai rồi

22 tháng 7 2015

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)

\(A=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}\cdot\frac{97}{303}=\frac{97}{606}\)

\(B=\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+\frac{2}{10\cdot13}+...+\frac{2}{100\cdot103}\)

\(B=\frac{2}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{100\cdot103}\right)\)

\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{103}\right)=\frac{2}{3}\cdot\frac{99}{412}=\frac{33}{206}\)

2 tháng 3 2018

tao dóe biet

2 tháng 3 2018

a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101

= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101

=( 2.3.4....100/2.3.4...100) . 1/101

= 1 . 1/101

=1/101

ý b tương tự nhé !

3 tháng 5 2017

\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)

\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

3 tháng 5 2017

N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/101

N=49/101

7 tháng 12 2016

http://olm.vn/hoi-dap/question/772291.html

sau 3 phút có kết quả tùy bạn

5 tháng 4 2017

A=\(\frac{37}{78}\)

B=\(\frac{9}{38}\)

3 tháng 3 2020

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)

\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(2A=1-\frac{1}{2005}\)

\(2A=\frac{2004}{2005}\)

\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)

3 tháng 3 2020

a)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=\frac{1}{1}-\frac{1}{2004}\)

\(\Rightarrow=\frac{2003}{2004}\)

b)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(=\frac{1}{1}-\frac{1}{2005}\)

\(\Rightarrow=\frac{2004}{2005}\)