Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
a: \(=\dfrac{3}{8}\left(27+\dfrac{1}{5}-51-\dfrac{1}{5}\right)+19\)
\(=-24\cdot\dfrac{3}{8}+19=-9+19=10\)
b: \(=\left(35+\dfrac{1}{6}-46-\dfrac{1}{6}\right):\left(\dfrac{-4}{5}\right)\)
\(=\dfrac{-11\cdot5}{-4}=\dfrac{55}{4}\)
c: \(=\left(\dfrac{-15+8}{20}\right):\left[\dfrac{3}{7}+\dfrac{7}{3}\cdot\dfrac{12-5}{20}\right]\)
\(=\dfrac{-7}{20}:\left(\dfrac{3}{7}+\dfrac{49}{60}\right)\)
\(=-\dfrac{147}{523}\)
a)\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}\)
=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)=1+1=2\)
b) \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
=\(\dfrac{8}{9}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
=\(\dfrac{8}{9}-\left(\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}\right)=\dfrac{8}{9}-\dfrac{8}{9}=0\)
thế này gọi là gian lận nha
tự đăng tự trả lời thì ko nên đăng làm gì
ko đc gì đâu
a: \(=\dfrac{3}{8}\left(72+\dfrac{1}{5}-51-\dfrac{1}{5}\right)=\dfrac{3}{8}\cdot21=\dfrac{63}{8}\)
b: \(=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{2}-\dfrac{1}{2}=-1\)
c: \(=4\left(35+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}-\left(45+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}\)
\(=\dfrac{-1}{5}\left(140+\dfrac{2}{3}-45-\dfrac{1}{6}\right)=-\dfrac{191}{10}\)
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2\cdot7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+\frac{1}{13}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}\)
\(\Rightarrow A=-\frac{1}{19}\)
\(=\dfrac{\dfrac{1}{2}\left(\dfrac{1}{7}-\dfrac{1}{15}-\dfrac{1}{23}\right)}{\dfrac{2}{5}\left(\dfrac{1}{7}-\dfrac{1}{15}-\dfrac{1}{23}\right)}:\left(\dfrac{2621}{4216}:\dfrac{647}{3162}\right)\)
\(=\dfrac{5}{4}:\dfrac{7863}{2588}=\dfrac{3235}{7863}\)