Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)
\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)
\(=-\sqrt{5}\)
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
\(A=\sqrt{8}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =2\sqrt{2}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =4\sqrt{2}+4\sqrt{7}\)
\(B=\left(3+2\sqrt{6}+2\right)\left(25-20\sqrt{6}+24\right)\sqrt{3-2\sqrt{6}+2}\\ =\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\\ =\left(\sqrt{3}+\sqrt{2}\right)\left(3-2\sqrt{6}+2\right)^2\\ =\left(\sqrt{3}-\sqrt{2}\right)^3\\ =9\sqrt{3}-11\sqrt{2}\)
a) \(\dfrac{2\sqrt{125}-3\sqrt{5}-\sqrt{180}}{-\sqrt{5}}+\sqrt{8}=\dfrac{2\sqrt{25.5}-3\sqrt{5}-\sqrt{36.5}}{-\sqrt{5}}+\sqrt{8}\)
\(=\dfrac{10\sqrt{5}-3\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=\dfrac{\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=2\sqrt{2}-1\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}\)
\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}=2\sqrt{2}+\sqrt{3}\)
c) \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}=\sqrt{16.3}-2\sqrt{9.\dfrac{1}{3}}+\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}\)
\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=1+\sqrt{3}\)
d) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)
\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)
=1
b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)
=1
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)