K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

A=1x2x3 + 2x3x4 +…+ 100x101x102
Nhân A với 4 ta có :
A x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+100x101x102x4
A x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 100x101x102x(103 - 99)
A x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 100x101x102x103 - 99x100x1001x102
Sau khi cộng - trừ giản ước ta có : A x 4 = 100x101x102x103
A = 100 x101x102x103 : 4 = 26527650

8 tháng 3 2017

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

31 tháng 5 2017

A=1x2x3 + 2x3x4 +…+ 100x101x102
Nhân A với 4 ta có :
A x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+100x101x102x4
A x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 100x101x102x(103 - 99)
A x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 100x101x102x103 - 99x100x1001x102
Sau khi cộng - trừ giản ước ta có : A x 4 = 100x101x102x103
A = 100 x101x102x103 : 4 = 26527650 

31 tháng 5 2017

26527650

16 tháng 4 2018

\(A=\frac{1X2X3+2X4X6+4X8X12+8X16X24}{2X3X4+4X6X8+8X12X16+8X24X32}\)

\(A=\frac{1+1+1+1}{4+4+4+2}\)

\(A=\frac{4}{14}\)

CHÚC BẠN HỌC GIỎI !

17 tháng 8 2018

A =1x2x3 + 2x3x4 +3x4x5+....+ 2010 x2011 x 2012

4A =1x2x3x4 + 2x3x4x4 +3x4x5x4+....+ 2010 x2011 x 2012x4

4A =1x2x3x4 + 2x3x4x(5+1) +3x4x5x(6-2)+....+ 2010 x2011 x 2012x(2013-2009)

4A =1x2x3x4 + 2x3x4x5-1x2x3x4+3x4x5x6-2x3x4x5+....+ 2010 x2011 x 2012x2013-2009x2010x2011x2012

4A = 2010 x2011 x 2012x2013

A = \(\frac{2010\times2011\times2012\times2013}{4}\)

17 tháng 8 2018

đặt S=1.2.3+2.3.4+....+18.19.20

4S=1.2.3.4+2.3.4.(5-1)+.......+18.19.20.(21-17)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+......+18.19.20.21-17.18.19.20

4S=....tự làm nha

17 tháng 11 2018

Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)

\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)

\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)

\(=\frac{1}{2}-\frac{1}{992}\)

\(=\frac{495}{992}\)

\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)

17 tháng 11 2018

\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\frac{990}{1984}\)

\(=\frac{990}{3968}=\frac{495}{1984}\)

20 tháng 8 2017
các bn giúp mk nha mk đang cần gấp
20 tháng 8 2017

Ta có:

\(F=1.2.3+2.3.4+...+98.99.100\)

\(\Rightarrow4F=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)

\(\Rightarrow4F=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)

\(\Rightarrow4F=98.99.100.101\Leftrightarrow F=\frac{98.99.100.101}{4}=24497550\)

21 tháng 9 2015

S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\frac{2029104}{4058210}\)

S = \(\frac{1014552}{4058210}\)

17 tháng 5 2022

`A=1/[1xx2xx3]+1/[2xx3xx4]+1/[3xx4xx5]+....+1/[98xx99xx100]`

`A=1/2xx(2/[1xx2xx3]+2/[2xx3xx4]+2/[3xx4xx5]+....+2/[98xx99xx100])`

`A=1/2xx(1/[1xx2]-1/[2xx3]+1/[2xx3]-1/[3xx4]+1/[3xx4]-1/[4xx5]+....+1/[98xx99]-1/[99xx100])`

`A=1/2xx(1/[1xx2]-1/[99xx100])`

`A=1/2xx(1/2-1/9900)`

`A=1/2xx(4950/9900-1/9900)`

`A=1/2xx4949/9900`

`A=4949/19800`

17 tháng 5 2022

 

\(A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}\)

\(A=\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right):2\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{12}-\dfrac{1}{20}+...+\dfrac{1}{9702}-\dfrac{1}{990}\right):2\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{990}\right):2\)

\(A=\dfrac{4949}{9900}:2\)

\(A=\dfrac{4949}{19800}\)

\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)

=1/2-1/380

=190/380-1/380

=189/380