Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{2}{1+2}.\frac{2+3}{1+2+3}.\frac{2+3+4}{1+2+3+4}...\frac{2+3+4+...+2011}{1+2+3+....+2011}\)
=\(\frac{2}{\frac{\left(2+1\right).2}{2}}.\frac{\left(2+3\right).2}{\frac{2}{\frac{\left(3+1\right).3}{2}}}....\frac{\left(2+2011\right)\left(2011-1\right)}{\frac{2}{\frac{\left(2011+1\right)2011}{2}}}\)
=\(\frac{4}{\left(2+1\right).2}\frac{\left(2+3\right).2}{\left(3+1\right).3}....\frac{(2+2011)\left(2011-1\right)}{\left(2011+1\right)2011}\)
=\(\frac{\left(1.4\right)\left(5.2\right)....\left(2013.2010\right)}{\left(3.2\right).\left(4.3\right)....\left(2012.2011\right)}\)
=\(\frac{\left(1.2.3...2010\right)\left(4.5.6...2013\right)}{\left(2.3.4...2011\right)\left(3.4.5....2012\right)}\)
=\(\frac{1}{2011}.\frac{2013}{3}\)=\(\frac{671}{2011}\)
Mk nghĩ vậy. Chắc là đúng đấy
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)
Với n thuộc N sao ta có :
\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{\left(n+1\right)n}\)
Áp dụng ta được :
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{2010.2013}{2011.2012}\)
\(=\frac{\left(1.2.3.....2010\right)\left(4.5.6.....2013\right)}{\left(2.3.4.....2011\right)\left(3.4.5.....2012\right)}\)
\(=\frac{2013}{2011.3}=\frac{2013}{6033}=\frac{671}{2011}\)
$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2011}\right)$(1−12 )(1−13 )(1−14 ).......(1−12011 )
\(\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right)...\left(1-\frac{1}{2011.2012}\right)=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{2010.2013}{2011\cdot2012}\)
\(\frac{\left(1.4\right)\left(2.5\right)\left(3.6\right)...\left(2010.2013\right)}{\left(2.3.4...2011\right).\left(3.4.5....2012\right)}=\frac{\left(1.2.3...2010\right).\left(4.5.6....2013\right)}{\left(2.3.4.....2011\right)\left(3.4.5...2012\right)}=\frac{1.2013}{2011.3}\)
\(\frac{2013}{6033}\)
Tổng các số tự nhiên từ 1 đến n là \(\frac{n\left(n+1\right)}{2}\)
Do đó \(A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2011}.\frac{2011.2012}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2012}{2}\)
\(=\left(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2012}{2}\right)-\frac{1}{2}\)
\(=\frac{1+2+3+...+2012}{2}-\frac{1}{2}\)
\(=\frac{\frac{2012.2013}{2}}{2}-\frac{1}{2}\)
\(=1012538,5\)
Vậy ....
A=(n+1)(n+2)/4=2012.2013/4=503.2013